<u>the correct question is</u>
The denarius was a unit of currency in ancient rome. Suppose it costs the roman government 10 denarii per day to support 4 legionaries and 4 archers. It only costs 5 denarii per day to support 2 legionaries and 2 archers. Use a system of linear equations in two variables. Can we solve for a unique cost for each soldier?
Let
x-------> the cost to support a legionary per day
y-------> the cost to support an archer per day
we know that
4x+4y=10 ---------> equation 1
2x+2y=5 ---------> equation 2
If you multiply equation 1 by 2
2*(2x+2y)=2*5-----------> 4x+4y=10
so
equation 1 and equation 2 are the same
The system has infinite solutions-------> Is a consistent dependent system
therefore
<u>the answer is</u>
We cannot solve for a unique cost for each soldier, because there are infinite solutions.
Answer:
1/11
Step-by-step explanation:
(6, 4) and (-5, 3)
Slope:
m=(y2-y1)/(x2-x1)
m=(3-4)/(-5-6)
m= (-1)/(-11)
m = 1/11
Answer:
-7x+14y-35
Step-by-step explanation:
equilateral
Step-by-step explanation:
all of the side lengths are the same along with the angles
Hi there!
»»————- ★ ————-««
I believe your answer is:
(-3, -1) and (1, 3)
»»————- ★ ————-««
Here’s why:
- I have graphed the two equations given on a graphing program.
- When graphed, they pass at points (-3, -1) and (1,3). Therefore, they are the solutions to the system.
⸻⸻⸻⸻
See the graph attached.
⸻⸻⸻⸻
»»————- ★ ————-««
Hope this helps you. I apologize if it’s incorrect.