Answer:
8.547 x 10⁴disintegrations per second
Explanation:
To calculate the disintegrations per second as -
Given ,
2.31 μCi of sulfur -35 .
Since ,
1 Ci = 3.7 * 10 ¹⁰ Bq
1 μCi = 10 ⁻⁶ Ci
Hence ,
conversation is done as follows -
2.31 ( 1 * 10⁻⁶) * ( 3.7 * 10¹⁰)
= 8.547 x 10⁴
Hence ,
8.547 x 10⁴disintegrations per second , the sample undergo for it to be brand new .
As mentioned above, phosphoric acid has 3 pKa values, and after 3 ionization it gives 3 types of ions at different pKa values:
H₃PO₄(aq)
+ H₂O(l) ⇌ H₃O⁺(aq) + H₂PO₄⁻ (aq) pKₐ₁
<span>
</span>H₂PO₄⁻(aq) + H₂O(l) ⇌ H₃O⁺(aq) + HPO₄²⁻ (aq) pKₐ₂
HPO₄²⁻(aq) + H₂O(l) ⇌ H₃O⁺(aq) + PO₄³⁻ (aq) pKₐ₃
At the highest pKa value (12.4) of phosphoric acid, the last OH group will lose its hydrogen. On the picture I attached, it is shown required protonated form of phosphoric acid before reaction whose pKa value is 12.4.
The volume of a gas is the same as its CONTAINER.
Gases generally has no shape and no definite volume. When a gas is placed in a container, the gas usually takes the shape and the volume of the container, that is, the gas fills up all the available spaces in the container. Thus, the volume of a gas will always be the same as its container. This is in contrast with solids, which have definite shape and volume and liquids, which have definite volume but no fixed shape.
Answer:
Around 450 B.C.
Explanation:
The idea was forgotten until the 1800 when John Dalton re-introduced the atom.