Answer:
The average kinetic energy of A is greater than that of B.
Explanation:
The temperature of an object is directly proportional to the average kinetic energy of the particles in the object. For instance, for an ideal gas, we have

where
KE is the kinetic energy
k is the Boltzmann constant
T the absolute temperature of the gas
Therefore, this means that in a hotter object the average kinetic energy of the particles is higher than the average kinetic energy of the particles in a colder object.
Moreover, the laws of thermodynamics tell us that heat is always transferred from a hotter object (higher temperature) to a colder object (lower temperature).
In this problem heat is transferred from sample A to sample B. Therefore, this means that object A has higher temperature, and therefore, higher average kinetic energy. So the correct answer is
The average kinetic energy of A is greater than that of B.
C & B are switched so I'm not sure if that was a typo or not, but the answer is concentration!
<u>The troposphere: </u>
H. This layer can have thunderstorms or clear, sunny skies.
A. The biosphere interacts most with this layer.
<u>The stratosphere:</u>
B. It is the second layer from Earth's surface.
G. Winds are strong and steady in this layer.
<u>The mesosphere:</u>
E. It is heated by the ozone layer beneath it.
D. This layer is where most meteor showers occur.
<u>The thermosphere :</u>
F. It contains the ionosphere and exosphere.
C. It contains layers of single, unmixed gas.
<u>Explanation:</u>
Depending on the Earth's temperature the atmosphere can be separated into layers. The troposphere, the stratosphere, the mesosphere and the thermosphere are those layers. The lowest layer is named as Troposphere (0-10 km from the Earth outer surface), it comprises about 75% of the atmosphere's total air and nearly most the water vapor.
Stratosphere (10-30) includes much of the surface ozone. The change in height temperature arises as this ozone absorbs ultraviolet (UV) radiation from the sun. The temperature in Mesosphere (30-50 Km) declines again with height, hitting a minimum of about -90 ° C at the "mesopause." Above this thermosphere (50-400 Km) is settled which is a area where temperatures rise with height once again. The penetration of intense UV and X-ray radiation from the sun induces this temperature rise.
The correct answer is C) There are more particle collision
With more particle collision, more reactions are created.