Answer:
160.3g
Explanation:
We know the equation:
No of moles = mass ÷ Mass of element
We need to find the mass, so make mass the subject of the formula.
Mass = No. of moles × mass of element
Mass = 5 × 32.06
Mass = 160.3g
The answer would be a planet<span>. Planets revolve around stars, which means there will come a point where the planet is between the star and our field of vision towards the star. This point will be where the star's radiation will have the lowest intensity. As the planet moves, the intensity will change. The effect is comparable to a lunar or solar eclipse.</span>
Answer: Option C. p-dichlorobenzene and 1,4-dichlorobenzene.
Explanation:
A line-angle formula with six vertices and a circle inscribed corresponds to the compound known as benzene.
Further, according to the IUPAC standards for naming benzene derivatives, you must first number the position of the substituent. In this case, the substituents (chloros) are located at the positions 1 and 4; also, for the benzene derivatives when they have 2 substituents and the positions are 1 and 4, this configuration is known as <em>para </em>or <em>p </em>configuration.
Additionally, this compound has 2 substituents (chloros) so you have to indicate this number (di).
Therefore, the correct answer is C. p-dichlorobenzene and 1,4-dichlorobenzene.
Answer:
Intrusive and Extrusive igneous rocks.
Explanation:
Igneous rocks are defined as those rocks that are formed when magma undergoes the process of crystallization and solidification at or below the earth's surface. For example, Granite, Rhyolite, Gabbro and Diorite.
The igneous rocks are of two different types, namely-
- Intrusive igneous rocks- This type of igneous rocks are formed when the magma crystallizes below or within the earth's crust. For example, Granite.
- Extrusive igneous rocks- This type of igneous rocks are formed when the magma crystallizes and solidifies at the surface of the earth. For example, Basalt.