Answer:
To completely fill the sandbox will cost $56
Step-by-step explanation:
First, we calculate volume of the rectangular-shaped sandbox:

We know that density of sand is 100 pounds per cubic foot. Then, to fill the sand box that has a volume of 8 cubic foot, we calculate by rule 3:
1cubic foot..............100 pounds
8 cubic foot.............x pounds


We will need 800 pounds of sand to fill the sandbox, then we can calculate by rule 3 the number of bags needed and next the total cost of them:
50 pounds.......1bag
800 pounds.....x bags

To calculate the cost:
1 bag ..................$3.50
16 bags.................$x

To completely fill the sandbox will cost $56
D because its a triangle so it would be 3x but then you have to add the 4 for the longer side.
Hey there! I am on the same one. :) I will help you out a little.
<span>Assume that all six outcomes of a six-sided number cube have the same probability. What is the theoretical probability of each roll?
• 1: 1/6
• 2: 2/6
• 3: 3/6
• 4: 4/6
• 5: 5/6
• 6: 6/6
</span>
<span>Using the uniform probability model you developed, what is the probability of rolling an even number?
1/6 Roll a number cube 25 times. Record your results here.
</span><span>
<span><span>
<span>
<span>1st
toss=</span>6</span>
</span>
<span>
<span>
<span>2nd
toss=</span>4</span>
</span>
<span>
<span>
<span>3rd
toss=</span>6</span>
</span>
<span>
<span>
<span>4th
toss=</span>6</span>
</span>
<span>
<span>
<span>5th
toss=</span>3</span>
</span>
<span>
<span>
<span>6th
toss=</span>3</span>
</span>
<span>
<span>
<span>7th
toss=</span>4</span>
</span>
<span>
<span>
<span>8th
toss=</span>2</span>
</span>
<span>
<span>
<span>9th
toss=</span>6</span>
</span>
<span>
<span>
<span>10th
toss=</span>5</span>
</span>
<span>
<span>
<span>11th
toss=</span>1</span>
</span>
<span>
<span>
<span>12th
toss=</span>4</span>
</span>
<span>
<span>
<span>13th
toss = </span>5</span>
</span>
<span>
<span>
<span>14th
toss =</span>1</span>
</span>
<span>
<span>
<span>15th
toss=</span>4</span>
</span>
<span>
<span>
<span>16th
toss=</span>2</span>
</span>
<span>
<span>
<span>17th
toss=</span>2</span>
</span>
<span>
<span>
<span>18th
toss=</span>2</span>
</span>
<span>
<span>
<span>19th
toss=</span>6</span>
</span>
<span>
<span>
<span>20th
toss=</span>5</span>
</span>
<span>
<span>
<span>21st
toss=</span>3</span>
</span>
<span>
<span>
<span>22nd
toss=</span>4</span>
</span>
<span>
<span>
<span>23rd
toss=</span>3</span>
</span>
<span>
<span>
<span>24th
toss=</span>3</span>
</span>
<span>
<span>
25
toss=5
How
many results of 1 did you have? __2____________ How
many results of 2 did you have? ____4__________ How
many results of 3 did you have? ____5__________ How
many results of 4 did you have? ______5________ How
many results of 5 did you have? ______4________
How
many results of 6 did you have? ______5________
Based
on your data, what is the experimental probability of each roll?
<span>
1. 2/25 or 0.08
2. 4/25 or 0.16
3. 5/25 or 0.24
4. 5/25 or 0.2
5.4/25 or 0.16
<span>
6. 5/25 or 0.2</span></span>Using
the probability model based on observed frequencies, what is the probability of
rolling an even number?
3/6 = ½ or 0.5
Was your experimental probability
different than your theoretical probability? Why or why not?
<span>It somewhat is! The
denominator is 25 for the experimental probability, and 6 for the theoretical
probability.</span><span>
</span><span>Have a lovely day! Cheerio. :) </span></span>
</span>
</span></span>
The answer is 4.51 and what needs to be added to 4.5 is a .01
Answer:
A.
Step-by-step explanation:
The Elimination Method is the method for solving a pair of linear equations which reduces one equation to one that has only a single variable.
If the coefficients of one variable are opposites, you add the equations to eliminate a variable, and then solve.
If the coefficients are not opposites, then we multiply one or both equations by a number to create opposite coefficients, and then add the equations to eliminate a variable and solve.
When multiplying the equation by a coefficient, we multiply both sides of the equation (multiplying both sides of the equation by some nonzero number does not change the solution).
So, option B is not allowed (it is not allowed to multiply only one part of the equation)