Answer:
options 1,3,4 are functions.
Step-by-step explanation:
RULE: a relation is said to be a function if every element in the domain ( the numbers in the left side in the below sets) is related to only one number ( number on the right side in the below sets).
Let us check each option one by one:
1. 3 2
9 1
-4 7
0 -2
here each number on the left side is mapped to or is related to one number only.
so this relation is a function
2. 7 1
-5 2,3
1 0
here, "-5" is mapped to two different numbers. so this relation is not a function.
3. -2 -4
2 4
6 8
-6 -8
here each number on the left side is mapped to or is related to one number only.
so this relation is a function
4. 1 3
-1 3
2 3
-2 3
here each number on the left side is mapped to or is related to one number only.
so this relation is a function.
even if it is related to the same number, it doesn't matter.
it should follow the above given rule that's it.
Answer:
$110 and $30
Step-by-step explanation:
To solve this, we need to know the total share which is,

Then, you need to know the fraction of the share over the total, such that



So if to find how much that'll be of the $180 for the largest and smallest share,
Largest:

Smallest:

Answer:
i think it is 19 is the whole number 9/40 is the remainder
Step-by-step explanation:
Given,
3/3x + 1/(x + 4) = 10/7x
1/x + 1/(x+4) = 10/7x
Because the first term on LHS has 'x' in the denominator and the second term in the LHS has '(x + 4)' in the denominator. So to get a common denominator, multiply and divide the first term with '(x + 4)' and the second term with 'x' as shown below
{(1/x)(x + 4)/(x + 4)} + {(1/(x + 4))(x/x)} = 10/7x
{(1(x + 4))/(x(x + 4))} + {(1x)/(x(x + 4))} = 10/7x
Now the common denominator for both terms is (x(x + 4)); so combining the numerators, we get,
{1(x + 4) + 1x} / {x(x + 4)} = 10/7x
(x + 4 + 1x) / (x(x + 4)) = 10/7x
(2x + 4) / (x(x + 4)) = 10/7x
In order to have the same denominator for both LHS and RHS, multiply and divide the LHS by '7' and the RHS by '(x + 4)'
{(2x+4) / (x(x + 4))} (7 / 7) = (10 / 7x) {(x + 4) / (x + 4)}
(14x + 28) / (7x(x + 4)) = (10x + 40) / (7x(x + 4))
Now both LHS and RHS have the same denominator. These can be cancelled.
∴14x + 28 = 10x + 40
14x - 10x = 40 - 28
4x = 12
x = 12/4
∴x = 3