Step-by-step explanation:

Answer:
Infinitely many triangles.
Step-by-step explanation:
Given the lengths of two sides are 8 inches and 10 inches.
Let's assume third side = x inches.
Using the Triangle Inequalities given as follows:-
1. a+b > c,
2. b+c > a,
3. c+a > b.
Using the lengths given in the problem, we can write:-
1. x+8 > 10 ⇔ x > 10-8 ⇔ x > 2.
2. x+10 > 8 ⇔ x > 8-10 ⇔ x > -2.
3. 8+10 > x ⇔ x < 18.
So, the solution set is 2 < x < 18. It means third side can take any value in interval (2, 18).
Hence, there are infinitely many triangles.
1/4 bc if you take the fraction 3/12 and simply it’s 1/4
They are the same slope
they are negative inversees (they multily to get -1)
2
-1/2
use the square viewer (on TI)
The relationship between the slopes of two lines that are parallel is they are the same.
The relationship between the slopes of two lines that are perpendicular is they are negative inverses of each other (they multiply to -1).
A line that is parallel to a line whose slope is 2 has slope 2.
A line that is perpendicular to a line whose slope is 2 has slope -1/2.
What must be done to make the graphs of two perpendicular lines appear
to intersect at right angles when they are graphed using a graphing
utility?