The height of the can for this case is given by:
h = 40 mm
The radius of the can is given by:
r = (1 3/8) * h
Substituting values:
r = (1 3/8) * 40
r = 55 mm
Therefore, the diameter of the can is:
d = 2 * r
d = 2 * 55
d = 110 mm
Answer:
The diameter of the can will be:
d = 110 mm
A=6
B= -1/2
C= 11
I had this one on my test and I got it right have a good day
We have a rectangle with length L that is 3 inches more than the width W. Then we can write this as:

The area of the rectangle is 180 square inches.
We have to find the width W.
As the area is equal to the product of the length and the width, we can write this equation and solve for W as:

We have a quadratic equation. The roots of this equation will be the mathematical solutions.
We can find the roots using the quadratic formula:
![\begin{gathered} W=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ W=\frac{-3\pm\sqrt[]{3^2-4\cdot1\cdot(-180)}}{2\cdot1} \\ W=\frac{-3\pm\sqrt[]{9+720}}{2} \\ W=\frac{-3\pm\sqrt[]{729}}{2} \\ W=\frac{-3\pm27}{2} \\ W_1=\frac{-3-27}{2}=-\frac{30}{2}=-15 \\ W_2=\frac{-3+27}{2}=\frac{24}{2}=12 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20W%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5C%5C%20W%3D%5Cfrac%7B-3%5Cpm%5Csqrt%5B%5D%7B3%5E2-4%5Ccdot1%5Ccdot%28-180%29%7D%7D%7B2%5Ccdot1%7D%20%5C%5C%20W%3D%5Cfrac%7B-3%5Cpm%5Csqrt%5B%5D%7B9%2B720%7D%7D%7B2%7D%20%5C%5C%20W%3D%5Cfrac%7B-3%5Cpm%5Csqrt%5B%5D%7B729%7D%7D%7B2%7D%20%5C%5C%20W%3D%5Cfrac%7B-3%5Cpm27%7D%7B2%7D%20%5C%5C%20W_1%3D%5Cfrac%7B-3-27%7D%7B2%7D%3D-%5Cfrac%7B30%7D%7B2%7D%3D-15%20%5C%5C%20W_2%3D%5Cfrac%7B-3%2B27%7D%7B2%7D%3D%5Cfrac%7B24%7D%7B2%7D%3D12%20%5Cend%7Bgathered%7D)
The solutions are W = -15 and W = 12.
The first one is not valid, as W has to be greater than 0.
Then, the solution to our problem is W = 12 in.
Answer: the width is W = 12 inches.
Answer:
B
Step-by-step explanation:
4d = 1/3
d = 1/3/4
d = 1/12
Thus, c is the correct choice.