1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inna [77]
3 years ago
15

Independent practice question 8=-12+5y

Mathematics
2 answers:
kodGreya [7K]3 years ago
7 0
Y= 4

Have a great day :)
Vladimir [108]3 years ago
3 0

Answer:

y=4

Step-by-step explanation:

You might be interested in
Each student in a class plays one of three sports soccer, volleyball or basketball. 1/4 of them play soccer. 3/5 of them play vo
Setler79 [48]

Answer: 3/20 of the class

Step-by-step explanation:

Add the amount of students that play soccer to amount of students that play volleyball

1/4 + 3/5 = 17/20

Subtract 17/20 (soccer and volley ball) from 20/20 or 1

20/20 - 17/20 = 3/20

7 0
3 years ago
Which set of measurements could represent the three sides of a triangle?
yawa3891 [41]

Answer:

The side lengths of a right triangle is 11cm, 60cm and 61cm, that could be selected from the given measurements.

Step-by-step explanation:

The measurements are,

                  7cm, 11cm, 54cm, 60cm, 61cm, 65cm

Step:1

                 To check the right angle triangle, Pythagorean theorem can be used.

                For a Pythagorean theorem,

                                     ..........................(1)

               The side values are lower than the hypotenuse,

                                                        ...................................(2)

               Where,

                         a,b - side values

                            c - Hypotenuse

               For right angle triangle,  c > a, b

               Alternative : 1

               Take, a = 7cm, b = 11cm

               From eqn (2),

                                                   =  = 13.04

              The above value is not equal to the any one of the values of ( 54cm. 60cm, 61cm, 65cm ), So its not an sides of right triangle.

               Alternative : 2

               Take, a = 7cm, b = 54cm

               From eqn (2),

                                                   =  = 54.45

              The above value is not equal to the any one of the values of (60cm, 61cm, 65cm ), So its not an sides of right triangle.

               Alternative : 3

               Take, a = 7cm, b = 60cm

               From eqn (2),

                                                   =  = 60.406

              The above value is not equal to the any one of the values of (61cm, 65cm ), So its not an sides of right triangle.

               Alternative : 4

               Take, a = 7cm, b = 61cm

               From eqn (2),

                                                   =  = 61.40

              The above value is not equal to the values of (65cm ), So its not an sides of right triangle.

                 Alternative : 5

               Take, a = 11cm, b = 54cm

               From eqn (2),

                                                   =  = 55.1089

              The above value is not equal to the any one of the values of (60cm, 61cm, 65cm ), So its not an sides of right triangle.      

                Alternative : 6

               Take, a = 11cm, b = 60cm

               From eqn (2),

                                                  =  = 61

              The above value is equal to the values of (61cm ), So its an sides of right triangle. The three sides are 11, 60 and 61.

Step:2

            Check for solution,

                                     

                                           

Result:

            The side lengths of a right triangle is 11cm, 60cm and 61cm, that could be selected from the given measurements.                

Step-by-step explanation: The side lengths of a right triangle is 11cm, 60cm and 61cm.

4 0
3 years ago
I need help can u help me please and thanks
son4ous [18]

Answer:

  17.74

Step-by-step explanation:

The fraction is easily converted to one with a denominator of 100 (a power of 10):

  \dfrac{37}{50}=\dfrac{37\cdot 2}{50\cdot 2}=\dfrac{74}{100}=0.74

Then the number of interest is ...

  17 37/50 = 17 74/100 = 17.74

3 0
3 years ago
Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by the given curves
Vadim26 [7]

The expression on the left side describes a parabola. Factorize it to determine where it crosses the y-axis (i.e. the line x = 0) :

-3y² + 9y - 6 = -3 (y² - 3y + 2)

… = -3 (y - 1) (y - 2) = 0

⇒   y = 1   or   y = 2

Also, complete the square to determine the vertex of the parabola:

-3y² + 9y - 6 = -3 (y² - 3y) - 6

… = -3 (y² - 3y + 9/4 - 9/4) - 6

… = -3 (y² - 2•3/2 y + (3/2)²) + 27/4 - 6

… = -3 (y - 3/2)² + 3/4

⇒   vertex at (x, y) = (3/4, 3/2)

I've attached a sketch of the curve along with one of the shells that make up the solid. For some value of x in the interval 0 ≤ x ≤ 3/4, each cylindrical shell has

radius = x

height = y⁺ - y⁻

where y⁺ refers to the half of the parabola above the line y = 3/2, and y⁻ is the lower half. These halves are functions of x that we obtain from its equation by solving for y :

x = -3y² + 9y - 6

x = -3 (y - 3/2)² + 3/4

x - 3/4 = -3 (y - 3/2)²

-x/3 + 1/4 = (y -  3/2)²

± √(1/4 - x/3) = y - 3/2

y = 3/2 ± √(1/4 - x/3)

y⁺ and y⁻ are the solutions with the positive and negative square roots, respectively, so each shell has height

(3/2 + √(1/4 - x/3)) - (3/2 - √(1/4 - x/3)) = 2 √(1/4 - x/3)

Now set up the integral and compute the volume.

\displaystyle 2\pi \int_{x=0}^{x=3/4} 2x \sqrt{\frac14 - \frac x3} \, dx

Substitute u = 1/4 - x/3, so x = 3/4 - 3u and dx = -3 du.

\displaystyle 2\pi \int_{u=1/4-0/3}^{u=1/4-(3/4)/3} 2\left(\frac34 - 3u\right) \sqrt{u} \left(-3 \, du\right)

\displaystyle -12\pi \int_{u=1/4}^{u=0} \left(\frac34 - 3u\right) \sqrt{u} \, du

\displaystyle 12\pi \int_{u=0}^{u=1/4} \left(\frac34 u^{1/2} - 3u^{3/2}\right)  \, du

\displaystyle 12\pi \left(\frac34\cdot\frac23 u^{3/2} - 3\cdot\frac25u^{5/2}\right)  \bigg|_{u=0}^{u=1/4}

\displaystyle 12\pi \left(\frac12 u^{3/2} - \frac65u^{5/2}\right)  \bigg|_{u=0}^{u=1/4}

\displaystyle 12\pi \left(\frac12 \left(\frac14\right)^{3/2} - \frac65\left(\frac14\right)^{5/2}\right) - 12\pi (0 - 0)

\displaystyle 12\pi \left(\frac1{16} - \frac3{80}\right) = \frac{12\pi}{40} = \boxed{\frac{3\pi}{10}}

6 0
2 years ago
How do I find the area of the base of a three dimensional cone
notka56 [123]
Idkk dmh shi fw food demic
8 0
4 years ago
Other questions:
  • At washington middle school 64% of the students play a sport. if 192 play a sport, how many students attend washington middle sc
    13·1 answer
  • What ordered pair represents the
    10·1 answer
  • Formula to get the energy of an object
    14·2 answers
  • Jody practiced a piano piece for 500 seconds bill practiced a piano piece for 8 minutes who practiced longer explain
    8·1 answer
  • Which of these numbers is prime?<br> 25, 26, 35, 39, 43
    5·2 answers
  • In a survey of zoom animals, for out of five monkeys preferred very ripe.What is this result as a percent?
    10·2 answers
  • A swing forward 50 degree and back 95 degree. How many degree forward must the swing go to return in starting position
    9·1 answer
  • Mia had 11/15 pounds of flour. She makes a cake with 2/25 pounds of flour.how much flour is left? Write as a fraction in simples
    14·1 answer
  • -<br> The midpoint of AB = ([?],[ ])<br> M = (x1+x2Yiy2
    12·1 answer
  • What is the height of the trapezoid?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!