1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adoni [48]
3 years ago
5

What is the answer to 4(950/2-125)/5

Mathematics
1 answer:
dimaraw [331]3 years ago
6 0

Answer:

280

Step-by-step explanation:

when you get the answer to all of that, you get 280 have a great day :)

You might be interested in
The mass of one methane molecule is 2.7x10^-23gram. Find the mass of 90,000 molecules of methane. Express the answer in scientif
melomori [17]

Answer:

2.43 • 10^-18

6 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Cmathsf%7BIf~~x%3D10%5E%7B%5Cdfrac%7B1%7D%7B1-log~z%7D%7D~~and~~y%3D10%5E%7B%5Cdfrac%7B1%7D%
alukav5142 [94]
\large\begin{array}{l} \textsf{Prove the following theorem:}\\\\ &#10;\textsf{If }\mathsf{x=10^\frac{1}{1-\ell og\,z}}\textsf{ and &#10;}\mathsf{y=10^{\frac{1}{1-\ell og\,x}},}\textsf{ then &#10;}\mathsf{z=10^{\frac{1}{1-\ell og\,y}}.}\\\\\\ &#10;\bullet~~\textsf{From the &#10;hypoteses, we must have:}\\\\ \mathsf{\ell og\,z\ne 1~\Rightarrow~z>0~~and~~z\ne &#10;10\qquad(i)}\\\\ \mathsf{\ell og\,x\ne 1~\Rightarrow~x>0~~and~~x\ne &#10;10\qquad(ii)} \end{array}

__________


\large\begin{array}{l} \textsf{Let's continue with the proof, using (i) and (ii) everytime}\\\textsf{it's needed.}\\\\ \textsf{If }\mathsf{x=10^{\frac{1}{1-\ell og\,z}},}\textsf{ then}\\\\ \mathsf{\ell og\,x=\ell og\!\left(10^{\frac{1}{1-\ell og\,z}}\right )}\\\\ \mathsf{\ell og\,x=\dfrac{1}{1-\ell og\,z}}\\\\ \mathsf{-\ell og\,x=\dfrac{-1}{1-\ell og\,z}} \end{array}


\large\begin{array}{l}&#10; \mathsf{1-\ell og\,x=1+\dfrac{-1}{1-\ell og\,z}}\\\\ \mathsf{1-\ell &#10;og\,x=\dfrac{1-\ell og\,z}{1-\ell og\,z}+\dfrac{-1}{1-\ell og\,z}}\\\\ &#10;\mathsf{1-\ell og\,x=\dfrac{1-\ell og\,z-1}{1-\ell og\,z}}\\\\ &#10;\mathsf{1-\ell og\,x=\dfrac{-\ell og\,z}{1-\ell &#10;og\,z}}\qquad\textsf{(using (i) below)} \end{array}


\large\begin{array}{l} \textsf{Since }\mathsf{\ell og\,x\ne 1,}\textsf{ both sides of the equality above will}\\\textsf{never be zero. Therefore, both sides can be inverted:}\\\\\textsf{Taking the reciprocal of both sides,}\\\\ \mathsf{\dfrac{1}{1-\ell og\,x}=\dfrac{1}{~\frac{-\ell og\,z}{1-\ell og\,z}~}}\\\\ \mathsf{\dfrac{1}{1-\ell og\,x}=\dfrac{1-\ell og\,z}{-\ell og\,z}}\\\\ \mathsf{\dfrac{1}{1-\ell og\,x}=\dfrac{\ell og\,z-1}{\ell og\,z}} \end{array}


\large\begin{array}{l} \textsf{From the last line above, we get as an immediate condition}\\\textsf{for z:}\\\\ \mathsf{\ell og\,z\ne 0~~\Rightarrow~~z\ne 1\qquad(iii)}\\\\\\ \textsf{Taking exponentials with base 10,}\\\\ \mathsf{10^{\frac{1}{1-\ell og\,x}}=10^{\frac{1-\ell og\,z}{-\ell og\,z}}} \end{array}


\large\begin{array}{l}&#10; \textsf{But }\mathsf{10^{\frac{1}{1-\ell &#10;og\,x}}=y.}\textsf{ So we get}\\\\ &#10;\mathsf{y=10^{\frac{1-\ell og\,z}{-\ell og\,z}}}\\\\\\\textsf{then}\\\\ \mathsf{\ell og\,y=\ell og\!\left(10^{\frac{1-\ell og\,z}{-\ell&#10; og\,z}}\right)}\\\\ \mathsf{\ell og\,y=\dfrac{1-\ell og\,z}{-\ell &#10;og\,z}}\\\\ \end{array}

\large\begin{array}{l} &#10;\mathsf{-\ell og\,y=-\,\dfrac{1-\ell og\,z}{-\ell og\,z}}\\\\ &#10;\mathsf{-\ell og\,y=\dfrac{1-\ell og\,z}{\ell og\,z}}\\\\ \mathsf{1-\ell&#10; og\,y=1+\dfrac{1-\ell og\,z}{\ell og\,z}}\\\\ \mathsf{1-\ell &#10;og\,y=\dfrac{\ell og\,z}{\ell og\,z}+\dfrac{1-\ell og\,z}{\ell &#10;og\,z}}\\\\ \mathsf{1-\ell og\,y=\dfrac{\ell og\,z+1-\ell og\,z}{\ell &#10;og\,z}}\\\\ \mathsf{1-\ell og\,y=\dfrac{1}{\ell &#10;og\,z}}\qquad\textsf{(using (iii) below)} \end{array}


\large\begin{array}{l} \\\\ \textsf{Notice that the right side of the equality above is a nonzero}\\\textsf{number, so it is possible to take the reciprocal of both sides:}\\\\ \mathsf{\dfrac{1}{1-\ell og\,y}=\ell og\,z}\\\\ \mathsf{10^{\frac{1}{1-\ell og\,y}}=10^{\ell og\,z}}\\\\ \mathsf{10^{\frac{1}{1-\ell og\,y}}=z}\\\\ \boxed{\begin{array}{c}\mathsf{z=10^{\frac{1}{1-\ell og\,y}}} \end{array}}\\\\\\ \textsf{which is what had to be shown.} \end{array}


If you're having problems understanding the answer, try to see it through your browser: brainly.com/question/2105740


\large\begin{array}{l} \textsf{Any doubt? Please, comment below.}\\\\\\ \textsf{Best wishes! :-)} \end{array}


Tags: <em>logarithm log proof statement theorem exponential base condition hypothesis</em>

3 0
3 years ago
Please explain in depth what the answer is and how i show work! &lt;3 ;( <br> (picture shown below!)
Andru [333]
Answer: D

To show work is plug the the x-coordinates for the points given.

Example:
x=2
y=-(1/4)x^2
y=-(1/4)2^2
y=-(1/4)4
y=-1

If you would like further explain action feel free to ask. :)
6 0
3 years ago
Find the equation of the line joining the points (4, 9) and (-1, 0)
Fed [463]

The equation of the line joining the points (4, 9) and (-1, 0) is y = 9/5 x + 9/5

<h3>How to find the equation of a line?</h3>

The formula for calculating the equation of a line is expressed as:

y = mx + b

m is the slope

b is the intercept

Determine the slope:

Slope = 0-9/-1-4
Slope = -9/-5
Slope = 9/5

Determine the y-intecept

0 = 9/5(-1) + b

b = 9/5
Hence the equation of the line is y = 9/5 x + 9/5

Learn more on equation of a line here: brainly.com/question/13763238

4 0
3 years ago
Is 7/13 greater than 1/2​
blagie [28]

Answer:

Yes

Step-by-step explanation:

7/13*2=14/26

13/26=1/2

7 0
3 years ago
Other questions:
  • Identify the multiplier for 2/9 = 6/27
    7·2 answers
  • Last month, a company had receipts totaling $3,700. The company had overhead costs of $444. What is the rate of overhead? A. 11%
    8·1 answer
  • How to find the factor for the expression <br> 4x-6y
    14·1 answer
  • A ray goes on forever in two directions true or false
    15·2 answers
  • Sweettooth frozen yogurt has 12 different toppings to choose from. if they add two new topping, how many ways more can ian choos
    12·2 answers
  • How can you use the pythagorean theorem to solve real-world problems
    7·2 answers
  • Convert 9.25% to fraction form
    8·1 answer
  • Solve.<br> 8w+5=4(2w+1)<br> A. W=0<br> B. No solution <br> C. W= -1/2<br> D. Infinity many solutions
    7·1 answer
  • 1. Andre earns $5200 a month at his new job. In order to track his spending and saving, he created a monthly budget. Andre divid
    8·2 answers
  • Determine the period.<br><br> Acellus
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!