<h3>The temperature is 15.58 kelvin </h3>
<em><u>Solution:</u></em>
<em><u>Ideal gas equation is given as:</u></em>

Where,
P = pressure
V = volume
n = amount of substance
R = ideal gas constant
T = temperature
From given,
V = 120 liters
n = 5 moles

P = 5.4 kPa
T = ?
Therefore,

Thus the temperature is 15.58 kelvin
"NUCLEAR POWER" produces "no air pollution".
Option: D
<u>Explanation</u>:
As nuclear power does not emit any hazardous gas or smoke thus it produces no air pollution. But disposing of the waste is still a big issue in the case of nuclear power for which usually underground disposal in appropriate container method is opted but it's too have many disadvantages. Threat of an accident and the expenses of constructing nuclear reactors are really high so other three options are disadvantages of nuclear power.
Answer:
Ag₂CrO₄(s) + H⁺(aq) ⟶ 2Ag⁺(aq) + HCrO₄⁻(aq)
Explanation:
Ag₂CrO₄(s) ⇌ 2Ag⁺(aq) + CrO₄²⁻(aq).
Silver chromate is the salt of a strong base (AgOH) and a weak acid (H₂CrO₄).
HCrO₄⁻ is an even weaker acid than H₂CrO₄, so CrO₄²⁻ is a strong base.
Any added H⁺ will immediately combine with the chromate ions according to the reaction
H⁺ + CrO₄²⁻ ⟶ HCrO₄⁻
thereby removing chromate ions from solution.
According to Le Châtelier's Principle, more silver chromate will dissolve to replace the chromate ions that the H⁺ removes.
The overall equation for the reaction is
Ag₂CrO₄(s) ⇌ 2Ag⁺(aq) + <em>CrO₄²⁻(aq)
</em>
<u>H⁺(aq) + </u><em><u>CrO₄²⁻(aq)</u></em><u> ⟶ HCrO₄⁻(aq)
</u>
Ag₂CrO₄(s) + H⁺(aq) ⟶ 2Ag⁺(aq) + HCrO₄⁻(aq)
Answer:
well its D Mg + 2HCl ----- MgCl2 + H2
Explanation:
Because Magnesium Replaces Hydrogen
Answer:

Explanation:
We know that the speed of light is equal to 
We need to find how far the light travel in 3 days.
Speed of an object is equal to distance covered divided by time taken.
Also, 1 day = 86400 s
3 days = 259200 s
So,


So, the light will travel
in 3 days.