Answer:
Ka = 0.1815
Explanation:
Chromic acid
pH = ?
Concentration = 0.078 M
Ka = ?
HCl
conc. = 0.059M
pH = -log(H+)
pH = -log(0.059) = 1.23
pH of chromic acid = 1.23
Step 1 - Set up Initial, Change, Equilibrium table;
H2CrO4 ⇄ H+ + HCrO4−
Initial - 0.078M 0 0
Change : -x +x +x
Equilibrium : 0.078-x x x
Step 2- Write Ka as Ratio of Conjugate Base to Acid
The dissociation constant Ka is [H+] [HCrO4−] / [H2CrO4].
Step 3 - Plug in Values from the Table
Ka = x * x / 0.078-x
Step 4 - Note that x is Related to pH and Calculate Ka
[H+] = 10^-pH.
Since x = [H+] and you know the pH of the solution,
you can write x = 10^-1.23.
It is now possible to find a numerical value for Ka.
Ka = (10^-1.23))^2 / (0.078 - 10^-1.23) = 0.00347 / 0.0191156
Ka = 0.1815
Types of decay | Radioactive decay | Khan Academy▶ 17:02<span>https://www.khanacademy.org/.../radioactive-dec...</span>Khan Academy<span>Alpha, Beta, Gamma Decay and Positron Emission. ... Radioactive decay. Mass defect and binding energy ...</span>
Answer:
Fat
Alkali
Explanation:
Fat and alkali are the two primary raw materials needed to manufacture soap.
Sodium hydroxide or potassium hydroxide is generally used as an alkali. The use of alkali depends on the intended application of the soap.
Raw animal fat was used in the past but these days, processed fat is used in the soap manufacturing process. Vegetable fats ( e.g, palm oil, olive oil, coconut oil) are also being used in soap manufacturing.
Additives are also used to enrich the color and texture of the soap.
Answer:
Correct option is D)
Explanation:
Crystallization is the process that is used to separate a pure solid in the form of its crystals from a solution.
Copper sulphate, salt, and potash alum can be purified by this method. In this process, the solution of the substance is heated and then cooled to form crystals.
Answer:
No
Explanation:
Let us examine this problem carefully:
Given compound is N₂O
Molecular mass = 88g
Now,
The empirical formula is the simplest formula of a compound.
The molecular formula is the true formula of the compound that shows that actual ratios of the atoms in a compound.
To find if they both have the same molecular and empirical formula, they must have the same molecular mass.
For N₂O;
Molecular mass = 2(14) + 16 = 44g/mole
But the true and given molecular formula of the compound is 88g/mole
This shows that the compound given is the empirical formula of the compound.
Molecular formula:
molecular mass of empirical formula x n = molecular mass of molecular formula
n =
= 2
Molecular formula of compound = 2(N₂O) = N₄O₂
Therefore the empirical and molecular formulas are not the same