<span>5 × 23 × 2 = 5 × 2 × 23 = 10 × 23 = 230</span>
527,519
= 500,000 + 20,000 + 7,000 + 500 + 10 + 9
= (5) * 100,000 + (2) * 10,000 + (7) * 1,000 + (5) * 100 + (1) * 10 + (9) * 1
= (5) * 10⁵ + (2) * 10⁴ + (7) * 10³ + (5) * 10² + (1) * 10¹ + (9) * 10⁰

From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm find the radius of the circle.

Here, O is the center of the circle.
<u>⟼</u><u> </u><u>Given</u><u> </u><u>:</u>
<u>⟼</u><u> </u><u>To</u><u> </u><u>Find</u><u> </u><u>:</u><u> </u> We have to find the radius OP.
Since QP is tangent, OP perpendicular to QP.
(Since, Tangent is Perpendicular to Radius ⠀⠀⠀⠀⠀⠀⠀at the point of contact)
So, ∠OPQ=90°
<u>⟼</u><u> </u><u>By</u><u> </u><u>Applying</u><u> </u><u>Pythagoras</u><u> </u><u>Theorem</u><u> </u><u>:</u>
OP² + RQ² = OQ²
OP² + (24)² = (25)²
OP² = 625 - 576
OP² = 49
OP = √49
<u>OP</u><u> </u><u>=</u><u> </u><u>7</u><u> </u><u>cm</u>
<u>Hence</u><u>,</u><u> </u><u>The</u><u> </u><u>Radius</u><u> </u><u>is</u><u> </u><u>7</u><u> </u><u>cm</u>
⠀⠀
⠀
<h3>-MissAbhi</h3>