Answer:
Step-by-step explanation:
Hello!
The variable of study is X: Temperature measured by a thermometer (ºC)
This variable has a distribution approximately normal with mean μ= 0ºC and standard deviation σ= 1.00ºC
To determine the value of X that separates the bottom 4% of the distribution from the top 96% you have to work using the standard normal distribution:
P(X≤x)= 0.04 ⇒ P(Z≤z)=0.04
First you have to use the Z tables to determine the value of Z that accumulates 0.04 of probability. It is the "bottom" 0.04, this means that the value will be in the left tail of the distribution and will be a negative value.
z= -1.75
Now using the formula of the distribution and the parameters of X you have to transform the Z-value into a value of X
z= (X-μ)/σ
z*σ = X-μ
(z*σ)+μ = X
X= (-1.75-0)/1= -1.75ºC
The value that separates the bottom 4% is -1.75ºC
I hope this helps!
That rounded to the nearest thousand would be 1,317.000
Answer:
3rd option
Step-by-step explanation:
The dotted line at x=3 removes the 2nd one
Cus it's a dotted line, the > sign has no line under it so not 1st option
last option has y intercept at 1 but the graph's y intercept is at -2 so it's not it