The amount needed in the account when Frost retires is given by the annuity formula. Compounding is 2 times per year.
.. A = Pi/(n(1 -(1 +r/n)^(-nt)))
.. 17900 = P*.08/(2*(1 -(1 +.08/2)^(-2*12)))
.. 17900 = P*.04/(1 -(1.04^-24))
.. P ≈ 272,920.64
The compound interest formula can be used to find the present value required. 4015 days is 11 years (ignoring leap years), so the amount to deposit can be calculated from
.. A = P*(1 +r/n)^(nt)
.. 272,920.64 = P*(1 +.08/2)^(2*11) = P*1.04^22
.. P ≈ 115,160.33
We don't know about the company's obligation to Robert. To fulfill its obligation to Frost, it must deposit 115,160.33 today.
Answer:
goodluck
Step-by-step explanation:
Answer:
p= 2.5
q= 7
Step-by-step explanation:
The lines should overlap to have infinite solutions, slopes should be same and y-intercepts should be same.
Equations in slope- intercept form:
6x-(2p-3)y-2q-3=0 ⇒ (2p-3)y= 6x -2q-3 ⇒ y= 6/(2p-3)x -(2q+3)/(2p-3)
12x-( 2p-1)y-5q+1=0 ⇒ (2p-1)y= 12x - 5q+1 ⇒ y=12/(2p-1)x - (5q-1)/(2p-1)
Slopes equal:
6/(2p-3)= 12/(2p-1)
6(2p-1)= 12(2p-3)
12p- 6= 24p - 36
12p= 30
p= 30/12
p= 2.5
y-intercepts equal:
(2q+3)/(2p-3)= (5q-1)/(2p-1)
(2q+3)/(2*2.5-3)= (5q-1)/(2*2.5-1)
(2q+3)/2= (5q-1)/4
4(2q+3)= 2(5q-1)
8q+12= 10q- 2
2q= 14
q= 7
It’s b and c and i believe a
Answer:
FALSE, (2, 9) is not a solution to the set of inequalities given.
Step-by-step explanation:
Simply replace x by 2 and y by 9 in the inequalities and see if the inequality is true or not:
irst inequality:

so thi inequality is verified as true since 9 is larger or equal than 8
Now the second inequality:

This is FALSE since 9 is larger than 4 (not smaller)
Therefore the answer to the question is FALSE, (2, 9) is not a solution to the set of inequalities given.