Answer:
Following are the responses to these question:
Explanation:
The heterokaryons were cells of diverse traditions or more nuclei. A heterokaryon cell with network cells (donor and receiver nuclei) sharing a common costly to treat is produced whenever a node containing GFP-tagged protein (donor cell) is merged to a cell non express the GFP-tagged proteins (recipient cell). Unless the intracellular scram nuclear exists, GFP must leave the GFP atoms, be shipped to the cytosol, and be exported to a nucleus with emission of GFP protein (recipient nucleus). It is obtaining nuclear has been beginning to release the GFP protein.
Unless the GFP protein doesn't display a nucleus costly to treat, this is not distributed across time in the metal target. By either sole dissemination through nuclear pores or receptor-mediated routes, protein yelling from nuclear to emotional exhaustion can occur. That GFP proteins are shown in a nucleus only suggests a path via a transmitter. For chloroplast, though, protein disperses via nuclear envelope. It is not the case. It should have nuclear foreign trade signals when ferrying between the nucleus and cytoplasm.
Cycloheximide is indeed a medicine that stops protein expression without elongating. For heterokaryon cells, it inhibits fresh protein synthesis. It makes visualization of a nanoparticle cell of only old pre-existing molecules (before cycloheximide diagnosis). That post GFP substance is a shuttling shielding substance that passes seen between the nucleus and the cytoplasm and the receiver nucleus. Whenever the levels of the shuttle were high, the GFP protein expression is shown both by the sender and receiver nucleus. The recipient nucleus will not be left without any schlepping protein. Thus, the donor nucleus can only be used.
<span>Wings have evolved several times independently. In flying fish, the wings are formed by the enlargement of the pectoral fins. Some fish leap out of the water and glide through the air, both to save energy and to escape predators. If they were already gliding, then any mutation that would result in an increase of the gliding surface would be advantageous to the fish that has it. These advantageous may allow these fish to out-compete the others.
Wings have also evolved in bats, pterosaurs, and birds. In these animals, the wings are formed by the forelimbs. In some lizards that have evolved gliding flight, however, the "wings" or gliding surfaces may be quite different. The lizard Draco, for example, has gliding surfaces formed by an extension of the ribs. A number of extinct reptiles have similar gliding surfaces. Frogs that glide have expanded webbing on their hands and feet. Gliding ("flying") squirrels and marsupial sugar gliders have flaps of skin that lie between the front and rear limbs. These gliding animals all have one thing in common: a gliding surface that is formed by enlarging some parts of the body.
In pterosaurs, the wing is formed by an elongated finger and a large skin membrane attached to this finger. In bats, the wing is formed by the entire hand, with skin membranes connecting the elongated fingers. In birds, flight feathers are attached to the entire forelimb, while the fingers have fused together. In all of these animals except birds, the wing is a solid structure. In birds, however, the wing is formed by a large number of individual feathers lying close to each other and each feather is in turn formed by filaments that interlock.
Biophysicists have determined that flight most likely evolved from the tree down. That means most active flyers evolved flight from an animal that was already gliding. Gliding was therefore probably an indispensable intermediate stage in the evolution of flight. Since gliding has evolved in so many different groups of animals, it follows that the ancestors of birds, bats, and pterosaurs were almost certainly gliders.
Unfortunately, the fossil records of the immediate gliding ancestors of birds, bats, and pterosaurs are all missing. The first known bat and bird fossils are recognizable as flyers. The same is true of pterosaurs. Therefore the origin of these flyers remain a mystery and a subject of often acrimonious debate. There are people who claim that dinosaurs evolved insulation, which then evolved into feathers, but the evidence for that is lacking. The so-called proto-feathers found on some dinosaurs are indistinguishable from the collagen fibers found in the skin of most vertebrates. Some of the supposedly feathered dinosaurs, such as Caudipteryx and Protarchaeopteryx, are actually flightless birds. The same is probably true of Microraptor fossils, which are (as Alan Feduccia says) probably "avian non-dinosaurs."
Even though the immediate ancestor of birds remains a mystery, there is a fossil known as Longisquama insignis, which lived during the late Triassic. It has featherlike structures on its back. It was probably a glider of some sort. So, this animal may well be the distant ancestor of Archaeopteryx, the oldest known bird.
In sum, flying almost certainly evolved from animals that were already gliding, or from the tree down, not from the ground up. The dinosaurian origin of birds requires that dinosaurs evolved feathers from insulation and flight to have evolved from the ground up. Both of these requirements are extremely unlikely to have occurred in evolutionary history, because dinosaurs are almost certainly ectothermic (or "cold-blooded") and therefore they never evolved insulation, and because feathers are too unnecessarily complex to have evolved as insulation. Flight from the ground up is also dangerous because large animals that attempt to fly from the ground may crash and seriously injure or even kill themselves. We all know how dangerous an airplane can be if it loses power and crashes. Small and light weight animals, OTOH, that were already gliding can survive if their attempt to fly fails. Finally, if flight evolved from gliding, then why do animals glide? The answer is that gliding is energetically much cheaper than to descend a tree, walk along the ground, and then climb up another tree. Besides, it is almost certainly much safer to glide from one tree to another than to be walking on the ground for many arboreal animals.
See link below for details of why dinosaurs are considered ectothermic according to the available scientific evidence.</span>Source(s):<span>http://discovermagazine.com/1996/dec/aco...</span>
The temperature and blood pressure of the patient drops.
Answer:
C) translation rate
Explanation:
The process of gene expression involves DNA transcription into mRNA and translation of mRNA into protein.
During transcription, genetic message in DNA is encoded into mRNA. The encoded messages are then translated into their respective amino acids during the process of translation.
<em>Hence, if a virus uses its genome as mRNA, the next stage will be to translate the messages in the mRNA into amino acids. Translation rate is expected to be measurable.</em>
The correct option is C.
Basically it involves translations:
Once you have your mRNA (which now only has exons) it then binds with rRNA (ribosomal RNA)
It reads a start codon, and then the tRNA reads a complimentary anticodon which codes for a specific amino acid.
Essentially the amino acids then interact elongate, and then you have a long chain of amino acids (primary structure of a protein)
Then there is a lot of folding, di-sulfide bridges and other interaction that then make the amino acids into a protein like haemoglobin (red blood cell)