Answer:
(a) (x-2)^2 +(y-2)^2 = 16
(b) r = 2
Step-by-step explanation:
(a) When the circle is offset from the origin, the equation for the radius gets messy. In general, it will be the root of a quadratic equation in sine and cosine, not easily simplified. The Cartesian equation is easier to write.
Circle centered at (h, k) with radius r:
(x -h)^2 +(y -k)^2 = r^2
The given circle is ...
(x -2)^2 +(y -2)^2 = 16
__
(b) When the circle is centered at the origin, the radius is a constant. The desired circle is most easily written in polar coordinates:
r = 2
<span>The
value of the determinant of a 2x2 matrix is the product of the top-left
and bottom-right terms minus the product of the top-right and
bottom-left terms.
The value of the determinant of a 2x2 matrix is the product of the top-left and bottom-right terms minus the product of the top-right and bottom-left terms.
= [ (1)(-3)] - [ (7)(0) ]
= -3 - 0
= -3
Therefore, the determinant is -3.
Hope this helps!</span>
Answer:
B.) as x --> -∞, f(x) --> ∞ and x --> ∞, f(x) --> ∞
Step-by-step explanation:
F(x) is another way of representing "y". That being said, the question is asking you the behavior of the graph in terms of the y-axis. On both sides of the function, there is an arrow pointing upwards, towards infinite, positive y-values. Therefore, as "x" approaches -∞ and ∞, f(x) is approaching ∞ (positive infinity).
Answer:
y-intercept of y=4x-3 is -3
Step-by-step explanation:
The given equation is:
y = 4x -3
The equation is in slope-intercept form.
The standard equation of slope-intercept form is:
y = mx + b
where m is the slope and b is the y-intercept
So, comparing the given equation with the standard equation the y-intercept is -3
y-intercept of y=4x-3 is -3