here is the answer I just took a picture because I already answered this for someone eles
The best thing to do is to rewrite the fractions as decimals
-2/3 is approx. equal to -0.6666667
So a little past half way (to the left) between -1 and 0
1 1/5 is 1.5 so that is right between 1 and 2
Hope this helps :)
9514 1404 393
Answer:
angles (W, X, Y) = (77°, 62°, 41°)
Step-by-step explanation:
<u>Given</u>:
ΔWZY
∠W = 2(∠Y) -5°
∠X = ∠Y +21°
<u>Find</u>:
∠X, ∠Y, ∠W
<u>Solution</u>:
Using angle measures in degrees, we have ...
∠X + ∠Y + ∠Z = 180
(∠Y +21) +∠Y + (2(∠Y) -5) = 180
4(∠Y) +16 = 180 . . . . . simplify
∠Y +4 = 45 . . . . . . . . . divide by 4
∠Y = 41 . . . . . . . . . . . . subtract 4
∠W = 2(41) -5 = 77
∠X = 41 +21 = 62
The angle measures of angles (W, X, Y) are (77°, 62°, 41°), respectively.
Answer:
1/27
Step-by-step explanation:
There are 9 numbers between 0 and 8. 3 of them are less than 3 (0, 1, and 2), and 1 of them is 6.
The probability is therefore (3/9) (1/9) = 1/27.
Answer:
Σ(-1)^kx^k for k = 0 to n
Step-by-step explanation:
The nth Maclaurin polynomials for f to be
Pn(x) = f(0) + f'(0)x + f''(0)x²/2! + f"'(0)x³/3! +. ......
The given function is.
f(x) = 1/(1+x)
Differentiate four times with respect to x
f(x) = 1/(1+x)
f'(x) = -1/(1+x)²
f''(x) = 2/(1+x)³
f'''(x) = -6/(1+x)⁴
f''''(x) = 24/(1+x)^5
To calculate with a coefficient of 1
f(0) = 1
f'(0) = -1
f''(0) = 2
f'''(0) = -6
f''''(0) = 24
Findinf Pn(x) for n = 0 to 4.
Po(x) = 1
P1(x) = 1 - x
P2(x) = 1 - x + x²
P3(x) = 1 - x+ x² - x³
P4(x) = 1 - x+ x² - x³+ x⁴
Hence, the nth Maclaurin polynomials is
1 - x+ x² - x³+ x⁴ +.......+(-1)^nx^n
= Σ(-1)^kx^k for k = 0 to n