I have no idea tbh. I will try to find how to do it and help you!
Answer:
-2
Step-by-step explanation:
hi! to find f(-3) on this graph, go to the x-value -3 and find the y-value there. when we look at -3 on the x-axis, we go down and see that there is a point at (-3,-2). therefore, f(-3)=-2.
1 1/6, 1 2/3, 1 5/6 is the order. :) hope I helped!
Answer: see below
<u>Step-by-step explanation:</u>
The vertex form of a quadratic equation is: y = a(x - h)² + k where
- "a" is the vertical stretch (positive = min [U], negative = max [∩])
- (h, k) is the vertex
- Axis of Symmetry is always: x = h
- Domain is always: x = All Real Numbers
- Range is y ≥ k when "a" is positive or y ≤ k when "a" is negative
a) y = 2(x - 2)² + 5
↓ ↓ ↓
a= + h= 2 k= 5
Vertex: (h, k) = (2, 5)
Axis of Symmetry: x = h → x = 2
Max/Min: "a" is positive → minimum
Domain: x = All Real Numbers
Range: y ≥ k → y ≥ 5
b) y = -(x - 1)² + 2
↓ ↓ ↓
a= - h= 1 k= 2
Vertex: (h, k) = (1, 2)
Axis of Symmetry: x = h → x = 1
Max/Min: "a" is negative → maximum
Domain: x = All Real Numbers
Range: y ≤ k → y ≤ 2
c) y = -(x + 4)² + 0
↓ ↓ ↓
a= - h= -4 k= 0
Vertex: (h, k) = (-4, 0)
Axis of Symmetry: x = h → x = -4
Max/Min: "a" is negative → maximum
Domain: x = All Real Numbers
Range: y ≤ k → y ≤ 0
d) y = 1/3(x + 2)² - 1
↓ ↓ ↓
a= + h= -2 k= -1
Vertex: (h, k) = (-2, -1)
Axis of Symmetry: x = h → x = -2
Max/Min: "a" is positive → minimum
Domain: x = All Real Numbers
Range: y ≥ k → y ≥ -2
Answer:
The domain of the function is all real values of x, except
and 
Step-by-step explanation:
We are given the following function:

It's a fraction, so the domain is all the real values except those in which the denominator is 0.
Denominator:
Quadratic equation with 
Using bhaskara, the denominator is 0 for these following values of x:



The domain of the function is all real values of x, except
and 