well, if that function f(x) were to be continuos on all subfunctions, that means that whatever value 7x + k has when x = 2, meets or matches the value that kx² - 6 has when x = 2 as well, so then 7x + k = kx² - 6 when f(2)
![f(x)= \begin{cases} 7x+k,&x\leqslant 2\\ kx^2-6&x > 2 \end{cases}\qquad \qquad f(2)= \begin{cases} 7(2)+k,&x\leqslant 2\\ k(2)^2-6&x > 2 \end{cases} \\\\[-0.35em] ~\dotfill\\\\ 7(2)+k~~ = ~~k(2)^2-6\implies 14+k~~ = ~~4k-6 \\\\\\ 14~~ = ~~3k-6\implies 20~~ = ~~3k\implies \cfrac{20}{3}=k](https://tex.z-dn.net/?f=f%28x%29%3D%20%5Cbegin%7Bcases%7D%207x%2Bk%2C%26x%5Cleqslant%202%5C%5C%20kx%5E2-6%26x%20%3E%202%20%5Cend%7Bcases%7D%5Cqquad%20%5Cqquad%20f%282%29%3D%20%5Cbegin%7Bcases%7D%207%282%29%2Bk%2C%26x%5Cleqslant%202%5C%5C%20k%282%29%5E2-6%26x%20%3E%202%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%207%282%29%2Bk~~%20%3D%20~~k%282%29%5E2-6%5Cimplies%2014%2Bk~~%20%3D%20~~4k-6%20%5C%5C%5C%5C%5C%5C%2014~~%20%3D%20~~3k-6%5Cimplies%2020~~%20%3D%20~~3k%5Cimplies%20%5Ccfrac%7B20%7D%7B3%7D%3Dk)
Answer:

Step-by-step explanation:
To find this derivative, we will need to use the chain rule.
As there is a variable in the exponent we can use this formula:

In this case,
and 
This means that
and
respectively
This gives us 
Answer: 44 degrees
Step-by-step explanation:
Answer:
A, C and E are true.
Step-by-step explanation:
The domain is a set of natural numbers.
The recursive formula is correct:
When x = 1, f(x) = 4 and f(x + 1) = f(2) = 3/2 f(x) = 3/2 * 4 = 6.
It is also true for the other points on the graph.
D is incorrect.
E is correct exponential growth with the formula 4(3/2)^(x-1).
Alright, so the area of one paper is 297mm*420mm=124740mm^2. Multiplying that by 6 due to 6 sheets, we get 748440mm^2. Converting mm^2 to m^2, since we know that 1000mm=1m, we simply do (1m/1000m)^2=1m^2/1,000,000mm^2. Our equation is now
748440mm^2*1m^2/1,000,000mm^2=0.748440m^2 by crossing out the millimeters. Lastly, since it's 80g/1m^2, we multiply our number by that to get 59.8752g