1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maksim [4K]
3 years ago
13

Solve the equation 18.2 + 1.5x = 37.7

Mathematics
2 answers:
12345 [234]3 years ago
7 0
Solve for x by simplifying both sides of the equation, then isolating the variable. 
x=13
antoniya [11.8K]3 years ago
4 0
X= 13
............................
You might be interested in
{25 POINTS]
klemol [59]
The point (3, -4) is on the terminal side of the Ø implies that the hypotenuse has a length of 5, by the pythagorean theorem.
Now recall cos<span>Ø = x / r where r is the hypotenuse.
So </span>cosØ = 3 / 5.
7 0
4 years ago
16=-(y+3)<br> Find what y is
PSYCHO15rus [73]

Answer:

isolate the variable by dividing each side by factors that don't contain the variable ..... answer is y =-19     :)

Step-by-step explanation:

8 0
3 years ago
Consider the following. f(x) = x5 − x3 + 6, −1 ≤ x ≤ 1 (a) Use a graph to find the absolute maximum and minimum values of the fu
kykrilka [37]

ANSWER

See below

EXPLANATION

Part a)

The given function is

f(x) =  {x}^{5}  -  {x}^{3}  + 6

From the graph, we can observe that, the absolute maximum occurs at (-0.7746,6.1859) and the absolute minimum occurs at (0.7746,5.8141).

b) Using calculus, we find the first derivative of the given function.

f'(x) = 5 {x}^{4} - 3 {x}^{2}

At turning point f'(x)=0.

5 {x}^{4} - 3 {x}^{2}  = 0

This implies that,

{x}^{2} (5 {x}^{2}  - 3) = 0

{x}^{2}  = 0 \: or \: 5 {x}^{2}  - 3 = 0

x =  - \frac{ \sqrt{15} }{5}   \: or \: x = 0 \:  \: or \: x =\frac{ \sqrt{15} }{5}

We plug this values into the original function to obtain the y-values of the turning points

(   -  \frac{ \sqrt{15} }{5}  , \frac{1}{125} ( 6 \sqrt{15}  +750)) \:and \:  (0, - 6) \: and\: (   \frac{ \sqrt{15} }{5}  , \frac{1}{125} ( - 6 \sqrt{15}  +750))

We now use the second derivative test to determine the absolute maximum minimum on the interval [-1,1]

f''(x) = 20 {x}^{3}  - 6x

f''( -  \frac{ \sqrt{15} }{5} ) \:   <  \: 0

Hence

(   -  \frac{ \sqrt{15} }{5}  , \frac{1}{125} ( 6 \sqrt{15}  + 750))

is a maximum point.

f''( \frac{ \sqrt{15} }{5} ) \:    >  \: 0

Hence

(     \frac{ \sqrt{15} }{5}  , \frac{1}{125} (- 6 \sqrt{15}  + 750))

is a minimum point.

f''(0) \: =\: 0

Hence (0,-6) is a point of inflexion

4 0
3 years ago
If the radius of a sphere is7 cm find its volume<br>​
BartSMP [9]

Answer:

1437.33 cm square

Step-by-step explanation:

Now we will use the frmula to et the volume of a sphere

volume of sphere is

<em>4</em><em>÷</em><em>3</em><em>pi</em><em> </em><em>r</em><em> </em><em>cube</em><em> </em>

<em>where</em><em> </em><em>r</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>radius</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>sphere</em><em> </em>

5 0
3 years ago
Solve for x in the equation x2 - 12x + 36 = 90
Mariana [72]

x^2 - 12x + 36 = 90 \\ (x-6)^2=90\\ x-6=\sqrt{90} \vee x-6=-\sqrt{90}\\ x=6+3\sqrt{10} \vee x=6-3\sqrt{10}

8 0
4 years ago
Other questions:
  • Use the formula to find the area use 3.14 for pie the circle is 15 cm
    5·1 answer
  • What is k?
    5·1 answer
  • Gizmo can eat 2 bowls of kibbles in 3 minutes. Leo can eat one bowl of kibbles in 6 minutes. Together, how many bowls of kibbles
    5·2 answers
  • What is the probability of the next elk caught in the park being unmarked? Write the probability as a fraction, a decimal number
    7·2 answers
  • ^^^^^^^^^^^^^^^^^^^^
    6·2 answers
  • I need help with this question​
    9·1 answer
  • Help me now please ive been in this question for a really long time
    10·1 answer
  • Earn 10 points if you simply answer my question please help me asap! thank you
    5·1 answer
  • 2/3 (6x+12) = -24 what is x​
    14·1 answer
  • What is an equivalent expression to 7x - 3y + 8x ?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!