7 cm, it’s a step by step equation
<span>In logic, the converse of a conditional statement is the result of reversing its two parts. For example, the statement P → Q, has the converse of Q → P.
For the given statement, 'If a figure is a rectangle, then it is a parallelogram.' the converse is 'if a figure is a parallelogram, then it is rectangle.'
As can be seen, the converse statement is not true, hence the truth value of the converse statement is false.
</span>
The inverse of a conditional statement is the result of negating both the hypothesis and conclusion of the conditional statement. For example, the inverse of P <span>→ Q is ~P </span><span>→ ~Q.
</span><span><span>For the given statement, 'If a figure is a rectangle, then it is a parallelogram.' the inverse is 'if a figure is not a rectangle, then it is not a parallelogram.'
As can be seen, the inverse statement is not true, hence the truth value of the inverse statement is false.</span>
</span>
The contrapositive of a conditional statement is switching the hypothesis and conclusion of the conditional statement and negating both. For example, the contrapositive of <span>P → Q is ~Q → ~P. </span>
<span><span>For the given statement, 'If a figure is a rectangle, then
it is a parallelogram.' the contrapositive is 'if a figure is not a parallelogram,
then it is not a rectangle.'
As can be seen, the contrapositive statement is true, hence the truth value of the contrapositive statement is true.</span> </span>
First, you divide the fraction, and then you multiply it by 100.
So you get:



So, 5/16 is 31.25%
Hope this Helps! :)
Step-by-step explanation:
To find the total surface area of a prism, you need to calculate the area of two polygonal bases, i.e., the top face and bottom face. And then calculate the area of lateral faces connecting the bases. Add up the area of the two bases and the area of the lateral faces to get the total surface area of a prism.
Hope this helps!
All the love, Ya boi Fraser :)
The information in the question let’s us solve for A using a ratio:
A / (A + 291) = 2 / 5
5A = 2A + 582
3A = 582
A = 194
Now we can use ratios again to solve for C:
11 / 2 = C / 194
2C = 2134
C = 1067