when it comes to checking if a function is even or odd, it boils down to changing the argument, namely x = -x, and if the <u>resulting function is the same as the original</u>, then is even, if the <u>resulting function is the same as the original but negative</u>, is odd, if neither, well then neither :).
anyway, that said, let's first expand it and then plug in -x,
![\bf f(x)=(x^2-8)^2\implies f(x)=(x^2-8)(x^2-8)\implies f(x)=\stackrel{FOIL}{x^4-16x^2+64}\\\\[-0.35em]~\dotfill\\\\f(-x)=(-x)^4-16(-x)^2+64\qquad \begin{cases}(-x)(-x)(-x)(-x)=x^4\\(-x)(-x)=x^2\end{cases}\\\\\\f(-x)=x^4-16x^2+64\impliedby \stackrel{\textit{same as the original}}{Even}](https://tex.z-dn.net/?f=%20%5Cbf%20f%28x%29%3D%28x%5E2-8%29%5E2%5Cimplies%20f%28x%29%3D%28x%5E2-8%29%28x%5E2-8%29%5Cimplies%20f%28x%29%3D%5Cstackrel%7BFOIL%7D%7Bx%5E4-16x%5E2%2B64%7D%5C%5C%5C%5C%5B-0.35em%5D~%5Cdotfill%5C%5C%5C%5Cf%28-x%29%3D%28-x%29%5E4-16%28-x%29%5E2%2B64%5Cqquad%20%5Cbegin%7Bcases%7D%28-x%29%28-x%29%28-x%29%28-x%29%3Dx%5E4%5C%5C%28-x%29%28-x%29%3Dx%5E2%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5Cf%28-x%29%3Dx%5E4-16x%5E2%2B64%5Cimpliedby%20%5Cstackrel%7B%5Ctextit%7Bsame%20as%20the%20original%7D%7D%7BEven%7D%20)
<em>Hi</em><em>!</em>
<em>Answer</em><em>:</em>
<em>6</em><em> </em><em>+</em><em> </em><em>(</em><em>-9</em><em>)</em><em> </em><em>-</em><em> </em><em>(</em><em>-4</em><em>)</em><em> </em><em>-</em><em> </em><em>3</em><em> </em><em>=</em>
<em>=</em><em> </em><em>6</em><em> </em><em>-</em><em> </em><em>9</em><em> </em><em>-</em><em> </em><em>b</em><em> </em><em>(</em><em>-4</em><em>)</em><em> </em><em>-</em><em> </em><em>3</em>
<em>=</em><em> </em><em>6</em><em> </em><em>-</em><em> </em><em>9</em><em> </em><em>+</em><em> </em><em>4b</em><em> </em><em>-</em><em> </em><em>3</em>
<em>=</em><em> </em><em>-6</em><em> </em><em>+</em><em> </em><em>4b</em>
<em>=</em><em> </em><em>4b</em><em> </em><em>-</em><em> </em><em>6</em>
<em>I hope I helped you! Good luck at school! </em>
Answer:
The answer is B.
Step-by-step explanation:
Ratio of bananas to carrots:
Bananas on the left,
5:
Carrots on the right.
5:7
10 hours : 15 logs
x hours : 9 logs
15*x = 9*10 => x=9*10/15=6 hours
With n logs,
x=n*10/15=2n/3 hours where n is the number of logs.