C 136 is the correct answer
You need to find the slope of the line too. they use m to represent slope.

point slope equation is y - y1 = m(x -x1)
they said to use point (-2, -2)
y -(-2) = 1(x -(-2))
y +2 = 1(x +2)
Answer:33mins
Step-by-step explanation:
This is applying the formula

We have a slight problem, though, because we are measuring rate in miles per hour, and we are measuring time in minutes. To make this problem solvable, we need to convert to either miles per minute or convert the time to hours. I'm going to convert the 15 minutes into hours:

Now that all of the units match, we have:

You can finish from there I'm sure.
Answer:
A. △P'Q'R' does not equal △P''Q''R''.
B. Reflecting across UT would change the orientation of the figure.
C. The sequence does not include a reflection that exchanges U and S.
D. Rotating about point U is not a rigid motion because it changes the orientation of the figure.
E. Translating point R' to Q' is a non-invertible transformation because it changes the location of P'.
(D) Rotating about U is not a rigid motion because it changes the orientation of the figure. [I think D is an incorrect answer choice.]
Step-by-step explanation:
Proof No.1
Jordan wants to prove △PQR≅△STU using a sequence of rigid motions. This is Jordan's proof. Translate △PQR to get △P'Q'R' with R'=U. Then rotate △P'Q'R' about point U to get △P''Q''R''. Since translation and rotation preserve distance, R''Q''=RQ=UT, and Q''=T. Reflect △P''Q''R'' across UT to get △P'''Q'''R''. Since reflection preserves distance, P'''R'''=PR=US, and P'''=S. A sequence of rigid motions maps △PQR onto △STU, so △PQR≅△STU.
Proof No.2
Jordan wants to prove △PQR≅△STU using a sequence of rigid motions. This is Jordan's proof. Translate △PQR to get △P'Q'R' with R'=U. Then rotate △P'Q'R about point U to get △P''Q''R'' so that R''Q'' and UT coincide. Since translation and rotation preserve distance, R''Q''=RQ=UT, and Q''=T. Reflect △P''Q''R'' across UT to get △P'''Q'''R''. Since reflection preserves distance, P'''R'''=PR=US, and P'''=S. A sequence of rigid motions maps △PQR onto △STU, so △PQR≅△STU.