Answer:
Explanation:
When a camera shifts focus from a faraway object to a nearby object, the lens-to-film distance must increase. Likewise, when it shifts focus from a nearby object to a distant object, there must be an increase in the lens to film distance (that is, the image distance).
Therefore, if the picture of an object that is far away, the lens must move towards the film.
The focal length cannot be changed because it is fixed for a lens. Nevertheless, in order to focus on an object, the image distance can be changed.
Answer:
As an object approaches the speed of light, its mass rises precipitously. If an object tries to travel 186,000 miles per second, its mass becomes infinite, and so does the energy required to move it. For this reason, no normal object can travel as fast or faster than the speed of light.
Explanation:
The average daily annual temperature range is exceeded in places such as deserts. Deserts tend to be hotter due to the lack of water contained within them. This means that all of the sun's thermal radiation heats up the ground and air. These factors cause deserts to have above average temperatures.
Answer:
(B) 13.9 m
(C) 1.06 s
Explanation:
Given:
v₀ = 5.2 m/s
y₀ = 12.5 m
(A) The acceleration in free fall is -9.8 m/s².
(B) At maximum height, v = 0 m/s.
v² = v₀² + 2aΔy
(0 m/s)² = (5.2 m/s)² + 2 (-9.8 m/s²) (y − 12.5 m)
y = 13.9 m
(C) When the shell returns to a height of 12.5 m, the final velocity v is -5.2 m/s.
v = at + v₀
-5.2 m/s = (-9.8 m/s²) t + 5.2 m/s
t = 1.06 s
Answer:
c. remains the same, but the RPMs decrease.
Explanation:
Because there aren't external torques on the system composed by the person and the turntable it follows that total angular momentum (I) is conserved, that means the total angular momentum is a constant:

The total angular momentum is the sum of the individual angular momenta, in our case we should sum the angular momentum of the turntable and the angular momentum of a point mass respect the center of the turntable (the person)
(1)
The angular momentum of the turntable is:
(2)
with I the moment of inertia and ω the angular velocity.
The angular momentum of the person respects the center of the turntable is:
(3)
with r the position of the person respects the center of the turntable, m the mass of the person and v the linear velocity
Using the fact
:
(3)
By (3) and (2) on (1) and working only the magnitudes (it's all that we need for this problem):


Because the equality should be maintained, if we increase the distance between the person and the center of the turntable (r), the angular velocity should decrease to maintain the same constant value because I and m are constants, so the RPM's (unit of angular velocity) are going to decrease.