Answer:
E. 3h
Explanation:
We know that
u = 0 m/s.
velocity after t = 1s
v = u+gt = 0+9.81 x 1s= 9.81 m/s
distance covered in 1st sec
= =>> ut+0.5 x g x t²
=>>0 + 0.5x 9.81 x 1 = 4.90m
Let 4.90 be h
distance travelled in 2nd second will now be used
So velocity after t = 1s
=>>1 x t+ 0.5 x g x t²
=>9.81x 1 + 0.5 x 9.81 x 1 = 3 x 4.90
So since h= 4.90
Then the ans is 3x h = 3h
Answer:
even if it all could be used, it wouldn't be enough
Explanation:
The land area of the US is about 5.45% of the world's area, so the amount of released heat over the area of the US is on the order of 2.4 Tw. Current technology for converting geothermal energy to electricity is about 12% efficient, so the available energy might amount to 0.29 Tw if it could all be captured.
Energy consumption in the US in 2019 was on the order of 0.46 Tw. This suggests that even if <em>all</em> of the thermal energy radiated by the Earth from the US could be turned to useful forms of energy, it would meet only about 60% of the US need for energy.
Answer:
Q₂ = 5833.33 J
Explanation:
First we need to find the energy supplied to the heat engine. The formula for the efficiency of the heat engine is given as:
η = W/Q₁
where,
η = efficiency of engine = 30% = 0.3
W = Work done by engine = 2500 J
Q₁ = Heat supplied to the engine = ?
Therefore,
0.3 = 2500 J/Q₁
Q₁ = 2500 J/0.3
Q₁ = 8333.33 J
Now, we find the heat discharged to lower temperature reservoir by using the formula of work:
W = Q₁ - Q₂
Q₂ = Q₁ - W
where,
Q₂ = Heat discharged to the lower temperature reservoir = ?
Therefore,
Q₂ = 8333.33 J - 2500 J
<u>Q₂ = 5833.33 J</u>
You said that the useful output power from the model is 6 watts. You also said that the model is 80% efficient. We have no reason to doubt your word, so we know that
(useful output) / (input power) = 80% or 0.8
(6 watts) / (input power) = 0.8
Multiply each side by (input power): 6 watts = (0.8) (input power)
Divide each side by 0.8 : Input power = (6 watts/ 0.8)
<em>Input power = 7.5 watts</em>