1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pentagon [3]
2 years ago
8

Slope: what is the slope?

Mathematics
1 answer:
Len [333]2 years ago
3 0

Answer: -2

Step-by-step explanation:

So basically I located the y-intercept first. Where is that? At the point (0,-2). Now from there, I found the nearest point on an intersecting grid line, in this case it would be (-1,0). So from the y-intercept, I looked at how many spaces I would have to move to get to (-1,0). You would have to go up 2 spaces and to the left 1 space. This is also written as 2/-1. Simplify this and you get -2! Hope this helped!

You might be interested in
What are the roots of the following polynomial equation? x^3 + 72= 5x^2 + 18x (write from least to greatest)
kow [346]

Answer:

2:3

Step-by-step explanation:

8 0
2 years ago
Evaluate the expression for x = 1.7. Enter your answer in the box.<br> x2 + 3x
S_A_V [24]

Answer: 6

Step-by-step explanation:

4 0
2 years ago
I need help I did most of them but not sure if there right if you could tell me that would be great. Also can you help me with 9
Andrej [43]

Explanation:

In the given identified the following with reasons.

1. Given

2. Corresponding Angles postulate

3. Reflexive property of congruence

4. AA similarity postulate.

5. Triangle proportionate  

6. Cross multiply

7. Distributive property of equality

8. Subtraction property of equality

9. Division property of equality

10. Prove

8 0
3 years ago
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
Laney walks 1 miles to school from her
faltersainse [42]

Answer: The answer is 35/3.

Step-by-step explanation:

The answer is 35/3.

8 0
2 years ago
Read 2 more answers
Other questions:
  • Write the slope-intercept form of the equation of the line through thr given point with the given slope.
    15·1 answer
  • Apply the distributive property to create an equivalent expression. 1/5(15+10k)
    6·2 answers
  • Which is least to greatest-7/3, -2 5/8, -2.9
    15·1 answer
  • In right triangle ABC, A=76º, a=13, and ∠C is the right angle. Solve the triangle.
    10·1 answer
  • 53-224-9-2-2<br> What is the Degree of the polynomial
    5·1 answer
  • The cost of hiring a hall for a party can be worked out using this formula.
    15·1 answer
  • Find the value of x for which ABCD must be a parallelogram
    10·1 answer
  • A line that contains the point (-8,-1) and is perpendicular to -15x +3y = 9
    8·1 answer
  • cleo can paint a room in 8 hours. while phil can paint the same room in 6 hours. if they paint the room together. how long will
    6·1 answer
  • Submit Test
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!