Answer:
A) f(x) has y-intercept at and g(x) has y-intercept at (0,0)
B) f(x) has asymptote as x= 0 and g(x) has asymptote as x= 4.
Step-by-step explanation:
The functions given are
and the graph of g(x).
A): Since, <em>'y-intercepts are the points where the graph of the function cuts y-axis'
</em>
<em>So, 'at x=0, we obtain y-intercepts'.</em>
Thus,
implies 
Hence,
is the y-intercept of f(x).
Now, we see that,
The graph of the function g(x) crosses y-axis at the point (0,0).
Hence, the (0,0) is the y-intercept of the function g(x).
B): As we know, <em>'asymptotes are the lines that approaches the curves but does not meet them'.
</em>
As, the numerator of f(x) is of lower degree than the denominator.
We have, the function f(x) has x= 0 as the horizontal asymptote.
Further, graph of g(x) gives us, 'the line x= 4 is the asymptote'.
Hence, the function g(x) has vertical line x= 4 as the asymptote.