1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scrat [10]
3 years ago
6

Problem 3

Mathematics
1 answer:
Murljashka [212]3 years ago
8 0

Answer:

-\frac{2}{5}

Step-by-step explanation:

Given expression:

           2x + 5y = -10

The equation of a straight line is;

            y = mx + c

y and x are the coordinates

m is the slope

c is the intercept

 Now;

          let us write the given expression in slope intercept format;

            2x + 5y  = -10

                    5y = -2x - 10

                     y = -\frac{2x}{5}  - 2

So, the slope of the line is -\frac{2}{5}

You might be interested in
What is the value of x if x over 5=3
Zolol [24]

Answer:

x = 15

Step-by-step explanation:

the easiest way to do this is 5 times 3 and with that we get 15 :)

Have an amazing day!!

Please rate and mark brainliest!!

3 0
2 years ago
Read 2 more answers
Find k so that the distance from (–1, 1) to (2, k) is 5 units. k= k= *there are two solutions for 2*
dalvyx [7]

Answer:

k = -3

k =5

Step-by-step explanation:

d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\d = 5\\(-1,1) =(x_1,y_1)\\(2,k)=(x_2,y_2)\\

5=\sqrt{\left(2-\left(-1\right)\right)^2+\left(k-1\right)^2}\\\\\mathrm{Square\:both\:sides}:\quad 25=k^2-2k+10\\25=k^2-2k+10\\\\\mathrm{Solve\:}\:25=k^2-2k+10:\\k^2-2k+10=25\\\\\mathrm{Subtract\:}25\mathrm{\:from\:both\:sides}\\k^2-2k+10-25=25-25\\k^2-2k-15=0\\\\\mathrm{Solve\:by\:factoring}\\\\\mathrm{Factor\:}k^2-2k-15:\quad \left(k+3\right)\left(k-5\right)\\\mathrm{Solve\:}\:k+3=0:\quad k=-3\\

\mathrm{Solve\:}\:k-5=0:\quad k=5\\\\k =5 , k=-3

7 0
3 years ago
Read 2 more answers
The perimeter of equilateral triangle ABC is 81/3 centimeters, find the length of the radius and apothem.
MAXImum [283]

There is a typo error, the perimeter of equilateral triangle ABC is 81/√3 centimeters.

Answer:

Radius = OB= 27 cm

Apothem = 13.5 cm

A diagram is attached for reference.

Step-by-step explanation:

Given,

The perimeter of equilateral triangle ABC is 81/√3 centimeters.

Substituting this in the formula of perimeter of equilateral triangle =3\times\ side

3\times\ side =[tex]81\sqrt{3}

Side = \frac{81\sqrt{3} }{3} =27\sqrt{3} \ cm

Thus from the diagram , Side AB=BC=AC= 27\sqrt{3} \ cm

We know each angle of an equilateral triangle is 60°.

From the diagram, OB is an angle bisector.

Thus \angle OBC = 30°

Apothem is the line segment from the mid point of any side to the center the equilateral triangle.

Therefore considering ΔOBE, and applying tan function.

tan\theta =\frac{perpendicular}{base} \\tan\theta=\frac{OE}{BE} \\tan\theta=\frac{OE}{\frac{27\sqrt{3}}{2}  } \\tan30\times {\frac{27\sqrt{3} }{2} }= OE\\\frac{1}{\sqrt{3} } \times\frac{27\sqrt{3} }{2} =OE\\

Thus ,apothem  OE= 13.5 cm

Now for radius,

We consider ΔOBE

cos\theta=\frac{base}{hypotenuse} \\cos30= \frac{BE}{OB} \\Cos30 = \frac{\frac{27\sqrt{3} }{2}}{OB}  \\OB= \frac{\frac{27\sqrt{3} }{2}}{cos30} \\OB= \frac{\frac{27\sqrt{3} }{2}}{\frac{\sqrt{3} }{2} } \\OB =27 \ cm

Thus for

Perimeter of equilateral triangle ABC is 81/√3 centimeters,

The radius of equilateral triangle ABC is 27 cm

The apothem of equilateral triangle ABC is 13.5 cm

4 0
3 years ago
A black tailed Jackrabbit hops about 7 feet in a single hop how far can it hop in 5 seconds
Sever21 [200]
If it hops 7 feet a second then it would hop 35 times in 5 seconds. 5 x 7 = 35.

Happy studying ^-^
6 0
3 years ago
Read 2 more answers
1. cot x sec4x = cot x + 2 tan x + tan3x
Mars2501 [29]
1. cot(x)sec⁴(x) = cot(x) + 2tan(x) + tan(3x)
    cot(x)sec⁴(x)            cot(x)sec⁴(x)
                   0 = cos⁴(x) + 2cos⁴(x)tan²(x) - cos⁴(x)tan⁴(x)
                   0 = cos⁴(x)[1] + cos⁴(x)[2tan²(x)] + cos⁴(x)[tan⁴(x)]
                   0 = cos⁴(x)[1 + 2tan²(x) + tan⁴(x)]
                   0 = cos⁴(x)[1 + tan²(x) + tan²(x) + tan⁴(4)]
                   0 = cos⁴(x)[1(1) + 1(tan²(x)) + tan²(x)(1) + tan²(x)(tan²(x)]
                   0 = cos⁴(x)[1(1 + tan²(x)) + tan²(x)(1 + tan²(x))]
                   0 = cos⁴(x)(1 + tan²(x))(1 + tan²(x))
                   0 = cos⁴(x)(1 + tan²(x))²
                   0 = cos⁴(x)        or         0 = (1 + tan²(x))²
                ⁴√0 = ⁴√cos⁴(x)      or      √0 = (√1 + tan²(x))²
                   0 = cos(x)         or         0 = 1 + tan²(x)
         cos⁻¹(0) = cos⁻¹(cos(x))    or   -1 = tan²(x)
                 90 = x           or            √-1 = √tan²(x)
                                                         i = tan(x)
                                                      (No Solution)

2. sin(x)[tan(x)cos(x) - cot(x)cos(x)] = 1 - 2cos²(x)
              sin(x)[sin(x) - cos(x)cot(x)] = 1 - cos²(x) - cos²(x)
   sin(x)[sin(x)] - sin(x)[cos(x)cot(x)] = sin²(x) - cos²(x)
                               sin²(x) - cos²(x) = sin²(x) - cos²(x)
                                         + cos²(x)              + cos²(x)
                                             sin²(x) = sin²(x)
                                           - sin²(x)  - sin²(x)
                                                     0 = 0

3. 1 + sec²(x)sin²(x) = sec²(x)
           sec²(x)             sec²(x)
      cos²(x) + sin²(x) = 1
                    cos²(x) = 1 - sin²(x)
                  √cos²(x) = √(1 - sin²(x))
                     cos(x) = √(1 - sin²(x))
               cos⁻¹(cos(x)) = cos⁻¹(√1 - sin²(x))
                                 x = 0

4. -tan²(x) + sec²(x) = 1
               -1               -1
      tan²(x) - sec²(x) = -1
                    tan²(x) = -1 + sec²
                  √tan²(x) = √(-1 + sec²(x))
                     tan(x) = √(-1 + sec²(x))
            tan⁻¹(tan(x)) = tan⁻¹(√(-1 + sec²(x))
                             x = 0
5 0
3 years ago
Other questions:
  • Use the greatest common factor to find the least common multiple of 12 and 18. What is the least common multiple of 12 and 18?
    15·1 answer
  • Subtract 8-4 1/2. A. 3 B. 4 C. 4 1/2 D. 3 1/2
    7·1 answer
  • Nick is making bread dough. The recipe requires 3/4 cup of flour and 1 1/8 teaspoon of salt. Nick wants to make the recipe using
    7·1 answer
  • Marcus, Jonathan and dennis went on a camping trip. Marcus ate 1/4 of thr granola bars, Jonathan att 1/2 of thr granola bars. De
    5·1 answer
  • The sum of 5/11 and 4/11 is <br> equal to 1<br> less than 1<br> greater than 1
    8·2 answers
  • The Capacity of a 1 cm cube is 1 mL. How many 1 cm ice cubes do you need to melt to fill a 1.5 L jar.
    10·1 answer
  • Please Help Me?!? File Attached....
    8·1 answer
  • Due in 1 hours, 24 minutes. Due Fri 06/28/2019 11:59 p A survey team is trying to estimate the height of a mountain above a leve
    12·1 answer
  • 2x^{3}+30xx^{2} +72x=0 solve using zero product property
    12·1 answer
  • Show Work Please Thank You
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!