I can’t seem to see the line below
Answer:
70 Minutes
Step-by-step explanation:
Divide 25 into 50 to get 2 and then multiply 2 x 35 to get 70
Given
- f(n) values for n=1,2,3,4
- possible candidates for the function
Solution:
Method: Evaluate some of the values, for each function. A function with ANY value not matching the given f(n) values will be rejected.
N=1, f(n)=4
f(1)=4-3(1-1)=4
f(1)=4+3^(1+1)=4+3^2=4+9=13 ≠ 4 [rejected]
f(1)=4(3^(n-1))=4(3^0)=4
f(1)=3(4^(n-1))=3(4^0)=3*1=3 [rejected]
N=2, f(n)=12
f(1)=4-3(2-1)=4-3(1)=1 ≠ 12 [rejected]
[rejected]
f(1)=4(3^(2-1)=4*3^1=4*3=12
[rejected]
Will need to check one more to be sure
N=3, f(n)=3
[rejected]
[rejected]
f(3)=4(3^(n-1))=4(3^(3-1))=4(3^2)=4*9=36 [Good]
[rejected]
Solution: f(n)=4(3^(n-1))
Answer:
e
Step-by-step explanation:
To find the surface area of the triangular prism, you need to find the area of all the sides and add them together. The two triangular bases have already been established to have an area of 3 square units each, so together they have an area of 6 units. Two of the rectangular sides have dimensions of 3.5 by 2.5 units, while one has dimensions 3.5 by 3 units. Adding all of this together, you get a total of 34 square inches, or option e. Hope this helps!
We know that
the distance from the centroid of the triangle to one of the vertices is the radius of the circle <span>required to inscribe an equilateral triangle.
[distance </span>centroid of the triangle to one of the vertices]=(2/3)*h
h=the <span>altitude of the equilateral triangle-----> 5.196 in
so
</span>[distance centroid of the triangle to one of the vertices]=(2/3)*5.196
[distance centroid of the triangle to one of the vertices]=3.464 in----> 3.5 in
the radius is equal to the distance of the centroid of the triangle to one of the vertices
hence
the radius is 3.5 in
the answer is
the radius is 3.5 in