1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UNO [17]
3 years ago
9

Please help, no links or i will report

Mathematics
2 answers:
skad [1K]3 years ago
7 0
Answer: I think it is 1/5
ch4aika [34]3 years ago
6 0

Answer:

i believe 1/5

Step-by-step explanation:

You might be interested in
PLZ HELP I GIVE BRAINLIEST...<br><br> 2-(-4)=?<br> -5-(10)=?
disa [49]

2 -(-4) = 2 + 4 = 6

-5-(10) = -5 - 10 = -15

I hope it helps you

5 0
4 years ago
Read 2 more answers
Zina solves a system of linear equations by elimination and finds a solution of (2, 2). One of the equations is a + b = 4. What
Dima020 [189]

Answer:

Option D

a+3b=8

6 0
3 years ago
Read 2 more answers
...im failing please
Taya2010 [7]

Answer:

top row on 9 page; 9) 53/5 10) 26/4 11) 37/4

bottom row on 9 page; 9) 8 and 1/7 10) 6 and 3/4 11) 1 and 1/3

top row on 3 page; 3) 2 and 2/7 4) 5 and 3/4 5) 8 and 1/10

bottom row on 3 page; 3) 4/3 4) 3/2 5) 12/5

top row on 12 page; 12) 21/10 13) 62/6 14) 57/6

bottom row on 12 page; 12) 1 and 9/10 13) 10 and 1/2 14) 3 and 3/8

Step-by-step explanation:

You never specified if these had to be simplified or turned into a fraction, so I just simplified them. That's about it.

I hope this helps :)

7 0
3 years ago
Find the area of the shaded region ​
o-na [289]

so hmmm let's get the area of the whole hexagon, and then get the area of the circle inside it, then <u>subtract the area of the circle from that of the hexagon's</u>, what's leftover is what we didn't subtract, namely the shaded part.

\textit{area of a regular polygon}\\\\ A=\cfrac{1}{4}ns^2\cot\stackrel{\stackrel{degrees}{\downarrow }}{\left( \frac{180}{n} \right)}~ \begin{cases} n=\textit{number of sides}\\ s=\textit{length of a side}\\[-0.5em] \hrulefill\\ n=\stackrel{hexagon}{6}\\ s=\frac{9}{2} \end{cases}\implies A=\cfrac{1}{4}(6)\left( \cfrac{9}{2} \right)^2 \cot\left( \cfrac{180}{6} \right)

A=\cfrac{1}{4}(6)\cfrac{9^2}{2^2} \cot(30^o)\implies A=\cfrac{243}{8}\cot(30^o)\implies A=\cfrac{243\sqrt{3}}{8} \\\\[-0.35em] ~\dotfill\\\\ \textit{area of circle}\\\\ A=\pi r^2~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=\frac{4}{5} \end{cases}\implies A=\pi \left( \cfrac{4}{5} \right)^2\implies A=\cfrac{16\pi }{25} \\\\[-0.35em] ~\dotfill

\stackrel{\textit{area of the hexagon}}{\cfrac{243\sqrt{3}}{8}}~~ - ~~\stackrel{\textit{area of the circle}}{\cfrac{16\pi }{25}}\implies \cfrac{6075\sqrt{3}-128\pi }{200}

5 0
2 years ago
1) Determine the discriminant of the 2nd degree equation below:
Aleksandr-060686 [28]

\LARGE{ \boxed{ \mathbb{ \color{purple}{SOLUTION:}}}}

We have, Discriminant formula for finding roots:

\large{ \boxed{ \rm{x =  \frac{  - b \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a} }}}

Here,

  • x is the root of the equation.
  • a is the coefficient of x^2
  • b is the coefficient of x
  • c is the constant term

1) Given,

3x^2 - 2x - 1

Finding the discriminant,

➝ D = b^2 - 4ac

➝ D = (-2)^2 - 4 × 3 × (-1)

➝ D = 4 - (-12)

➝ D = 4 + 12

➝ D = 16

2) Solving by using Bhaskar formula,

❒ p(x) = x^2 + 5x + 6 = 0

\large{ \rm{ \longrightarrow \: x =  \dfrac{ - 5\pm  \sqrt{( - 5) {}^{2} - 4 \times 1 \times 6 }} {2 \times 1}}}

\large{ \rm{ \longrightarrow \: x =  \dfrac{ - 5  \pm  \sqrt{25 - 24} }{2 \times 1} }}

\large{ \rm{ \longrightarrow \: x =  \dfrac{ - 5 \pm 1}{2} }}

So here,

\large{\boxed{ \rm{ \longrightarrow \: x =  - 2 \: or  - 3}}}

❒ p(x) = x^2 + 2x + 1 = 0

\large{ \rm{ \longrightarrow \: x =  \dfrac{  - 2 \pm  \sqrt{ {2}^{2}  - 4 \times 1 \times 1} }{2 \times 1} }}

\large{ \rm{ \longrightarrow \: x =  \dfrac{ - 2 \pm \sqrt{4 - 4} }{2} }}

\large{ \rm{ \longrightarrow \: x =  \dfrac{ - 2 \pm 0}{2} }}

So here,

\large{\boxed{ \rm{ \longrightarrow \: x =  - 1 \: or \:  - 1}}}

❒ p(x) = x^2 - x - 20 = 0

\large{ \rm{ \longrightarrow \: x =  \dfrac{ - ( - 1) \pm  \sqrt{( - 1) {}^{2} - 4 \times 1 \times ( - 20) } }{2 \times 1} }}

\large{ \rm{ \longrightarrow \: x =  \dfrac{ 1 \pm \sqrt{1 + 80} }{2} }}

\large{ \rm{ \longrightarrow \: x =  \dfrac{1 \pm 9}{2} }}

So here,

\large{\boxed{ \rm{ \longrightarrow \: x = 5 \: or \:  - 4}}}

❒ p(x) = x^2 - 3x - 4 = 0

\large{ \rm{ \longrightarrow \: x =   \dfrac{  - ( - 3) \pm \sqrt{( - 3) {}^{2} - 4 \times 1 \times ( - 4) } }{2 \times 1} }}

\large{ \rm{ \longrightarrow \: x =  \dfrac{3 \pm \sqrt{9  + 16} }{2 \times 1} }}

\large{ \rm{ \longrightarrow \: x =  \dfrac{3  \pm 5}{2} }}

So here,

\large{\boxed{ \rm{ \longrightarrow \: x = 4 \: or \:  - 1}}}

<u>━━━━━━━━━━━━━━━━━━━━</u>

5 0
3 years ago
Read 2 more answers
Other questions:
  • Eight less than four times the number c is twenty.<br> What is the value of c?
    10·2 answers
  • What is the most appropriate measurement of the amount of liquid in Starpoint's pool?
    13·1 answer
  • Mr. Diaz has 347 apple trees in his orchard. He has 162 more apple trees than peach trees in his orchard . How many peach trees
    5·1 answer
  • How many solutions can be found for the linear equation?
    14·1 answer
  • Help Please!<br>parallel and perpendicular lines
    7·1 answer
  • 1st question I want to solve
    7·1 answer
  • Which expression is equivalent to -8(5m - 7.4)?
    14·2 answers
  • A. Economic theory describes the relationship between inflation and unemployment as:
    5·1 answer
  • 100 POINTS. ANSWERER GETS BRAINLIEST
    15·2 answers
  • Select the correct answer from each drop-down menu.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!