Answer: A
Step-by-step explanation:
The sum to infinity of a geometric series is
S (∞ ) = \frac{a}{1-r} ( - 1 < r < 1 )
where a is the first term 8 and r is the common ratio, hence
S(∞ ) = {8}{1-\{1}{2} } = {8}{1}{2} } = 16
Answer:
{x| -2 ≤ x < 5}
Step-by-step explanation:
The domain is the x value in a graph, function e.t.c. From the farthest point to the left of the x-axis, we see -2. And from the farthest point to the right of the x-axis, we see 5. Therefore, the domain is {x| -2 ≤ x < 5}, Option C
Look here for visuals:
Hello,
Very nice as problem.
2 solutions:
1 quater,8 dimes, 2 pennies
and
3 quaters,3 dimes, 2 pennies
since
107=( 0, 0, 107) but : 100= 0*25+ 0*10+ 100
107=( 0, 1, 97) but : 100= 0*25+ 1*10+ 90
107=( 0, 2, 87) but : 100= 0*25+ 2*10+ 80
107=( 0, 3, 77) but : 100= 0*25+ 3*10+ 70
107=( 0, 4, 67) but : 100= 0*25+ 4*10+ 60
107=( 0, 5, 57) but : 100= 0*25+ 5*10+ 50
107=( 0, 6, 47) but : 100= 0*25+ 6*10+ 40
107=( 0, 7, 37) but : 100= 0*25+ 7*10+ 30
107=( 0, 8, 27) but : 100= 0*25+ 8*10+ 20
107=( 0, 9, 17) but : 100= 0*25+ 9*10+ 10
107=( 0, 10, 7) but : 100= 0*25+ 10*10+ 0
107=( 1, 0, 82) but : 100= 1*25+ 0*10+ 75
107=( 1, 1, 72) but : 100= 1*25+ 1*10+ 65
107=( 1, 2, 62) but : 100= 1*25+ 2*10+ 55
107=( 1, 3, 52) but : 100= 1*25+ 3*10+ 45
107=( 1, 4, 42) but : 100= 1*25+ 4*10+ 35
107=( 1, 5, 32) but : 100= 1*25+ 5*10+ 25
107=( 1, 6, 22) but : 100= 1*25+ 6*10+ 15
107=( 1, 7, 12) but : 100= 1*25+ 7*10+ 5
107=( 1, 8, 2) is good
107=( 2, 0, 57) but : 100= 2*25+ 0*10+ 50
107=( 2, 1, 47) but : 100= 2*25+ 1*10+ 40
107=( 2, 2, 37) but : 100= 2*25+ 2*10+ 30
107=( 2, 3, 27) but : 100= 2*25+ 3*10+ 20
107=( 2, 4, 17) but : 100= 2*25+ 4*10+ 10
107=( 2, 5, 7) but : 100= 2*25+ 5*10+ 0
107=( 3, 0, 32) but : 100= 3*25+ 0*10+ 25
107=( 3, 1, 22) but : 100= 3*25+ 1*10+ 15
107=( 3, 2, 12) but : 100= 3*25+ 2*10+ 5
107=( 3, 3, 2) is good
107=( 4, 0, 7) but : 100= 4*25+ 0*10+ 0