Answer:
(2x+5)(x+4)
Step-by-step explanation:
After factoring we can find that it equals
(2x+5)(x+4)
The dimensions and volume of the largest box formed by the 18 in. by 35 in. cardboard are;
- Width ≈ 8.89 in., length ≈ 24.89 in., height ≈ 4.55 in.
- Maximum volume of the box is approximately 1048.6 in.³
<h3>How can the dimensions and volume of the box be calculated?</h3>
The given dimensions of the cardboard are;
Width = 18 inches
Length = 35 inches
Let <em>x </em>represent the side lengths of the cut squares, we have;
Width of the box formed = 18 - 2•x
Length of the box = 35 - 2•x
Height of the box = x
Volume, <em>V</em>, of the box is therefore;
V = (18 - 2•x) × (35 - 2•x) × x = 4•x³ - 106•x² + 630•x
By differentiation, at the extreme locations, we have;

Which gives;

6•x² - 106•x + 315 = 0

Therefore;
x ≈ 4.55, or x ≈ -5.55
When x ≈ 4.55, we have;
V = 4•x³ - 106•x² + 630•x
Which gives;
V ≈ 1048.6
When x ≈ -5.55, we have;
V ≈ -7450.8
The dimensions of the box that gives the maximum volume are therefore;
- Width ≈ 18 - 2×4.55 in. = 8.89 in.
- Length of the box ≈ 35 - 2×4.55 in. = 24.89 in.
- The maximum volume of the box, <em>V </em><em> </em>≈ 1048.6 in.³
Learn more about differentiation and integration here:
brainly.com/question/13058734
#SPJ1
I’m not 100% sure but I think it’s y=5x+20
Since ABCD is a parallelogram, the opposite sides will be parallel and equal,

Consider that AC acts as a transversal to the parallel lines AB and CD, so we can write,

So by the ASA criteria, the triangle AED is congruent to the triangle CEB,
Then the corresponding parts of the triangles will be equal,

Hence Proved.