Answer:
The product of glycolysis is two molecules of pyruvate. It is a three-carbon compound. This pyruvate again undergoes oxidation in the cytoplasm. This process is called pyruvate oxidation which produces Acetyl CoA. The Acetyl CoA is a two-carbon molecule.
Acetyl CoA again used for the citric acid cycle. This is also called as Kreb's cycle / TCA cycle. Because citric acid has 3 carboxylic groups. The acetyl coenzyme produces NADH, FADH2, ATP. The citric acid cycle occurs in the mitochondrial membrane. This is an 8 step process. The first product is citric acid. The other products of each step are isocitrate, alpha-ketoglutarate, succinyl CoA, succinate, Fumarate, L - malate, and Oxaloacetate (OAA).
Another process of aerobic respiration is the electron transport chain ( ETS). Here the energy stored in NADH, FADH2 in the citric acid cycle are utilized. It is a chain of electron carriers. ETS occurs in the inner membrane of mitochondria.
In short, the glucose splits by glycolysis and produces ATP, NADPH, and final product pyruvate. The pyruvate is oxidized and forms acetyle coenzyme. This is used in the TCA / citric acid cycle. In this process also NADH, FADH2 which forms electrons are produced. Theses electrons are carried by different electron carriers and accepted by oxygen.
In the process of pyruvate oxidation 6 ATP, and in Kreb's cycle 18 ATPs, in ETS, 4 ATPs are produced. In addition to this in glycolysis produces 4 ATPs. The total number of ATP in aerobic respiration is 32 ATP.
Answer is Plants and animals both break a phosphate bond of ATP to release energy.
In both plants and animals adenosine triphosphate (ATP) is the main molecule for storing and transferring energy in cells. It is also called the energy currency of the cell. ATP molecule composed of three phosphate groups. These phosphate groups are linked to one another by two high-energy phosphoanhydride bonds. When energy is required by the cell, one a phosphoanhydride is bond broken removing one phosphate. As a result energy is released and ATP is converted to adenosine diphosphate (ADP).
The answer to your question is12
Answer:
Neutrophils help fight infections because they ingest microorganisms and secrete enzymes that destroy them. A neutrophil is a type of white blood cell, a type of granulocyte and a type of phagocyte.
Explanation:
Neutrophils display adhesion glycoproteins on their surface to bind endothelial and subendothelial structures. They move randomly until they find a damaged site. Unless neutrophils are activated, endothelial cells do not tend to adhere. When inflammation mediators (IL-1, FNT) activate endothelial cells, they express P-selectin and E-selectin on the surface. The expression of glycoproteins and L-selectin cause the initial adhesion of the non-stimulated neutrophil to the activated endothelium, slowing it down by rolling it over the endothelium. Activated endothelial cells, opsonized particles, immune complexes, FEC-G, FEC-GM and chemoattractants produce factors that stimulate neutrophil activation. Expressing β2 integrin (endothelium adhesion molecule) Neutrophils expand and form pseudopods. Neutrophil activation also promotes degranulation, superoxide generation, and arachidonate metabolite production.
Rough endoplasmic reticulum is the site of the synthesis of proteins destined for export from the cell.