1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
4vir4ik [10]
3 years ago
15

Don’t answer if you don’t know! Your question and account will be reported!

Mathematics
1 answer:
Mkey [24]3 years ago
4 0

Answer:You can divide 54.50 by just 20% with it being 272.5

Step-by-step explanation: You can use it be fraction by dividing it by 20 then you have 2.725 which is the answer.

You might be interested in
8.5 is 50% of what number
zaharov [31]
The answer is going to be 17%. hope that helped
8 0
3 years ago
In a certain​ year, brand A of​ heart-rate watch cost ​$39.99 and brand B cost ​$59.99. A nonprofit community health organizatio
Oksi-84 [34.3K]

Answer:

Brand A = 21 heart-rate watches.

Brand B = 13 heart-rate watches.

Step-by-step explanation:

Let A be the number of Brand A heart watches and B be the number of Brand B heart watches.

We have been given that a nonprofit community health organization purchased 34 ​heart-rate watches for use at a wellness center.

We can represent this information in an equation as:

A+B=34...(1)

We have been given that in a certain​ year, brand A of​ heart-rate watch cost ​$39.99 and brand B cost ​$59.99 and the organization spent ​$1619.66 for the​ watches.

We can represent this information in an equation as:

39.99*A+59.99*B=1619.66...(2)

We will use substitution method to solve our system of equations.

From equation (1) we will get,

A=34-B

Substituting A=34-B in equation(2) we will get,

39.99*(34-B)+59.99*B=1619.66

1359.66-39.99*B+59.99*B=1619.66

-39.99*B+59.99*B=1619.66-1359.66

20*B=260

B=\frac{260}{20}

B=13

Therefore, the organisation purchased 13 heart-rate watches of brand B.

Now let us substitute B=13 in equation (1).

A+13=34

A+13-13=34-13

A=21

Therefore, the organisation purchased 21 heart-rate watches of brand A.

8 0
3 years ago
Factor completely 3x4 − 30x3 + 75x2
k0ka [10]
3x^2(x^2-10x+25) hope this helps
5 0
4 years ago
Read 2 more answers
The third-degree Taylor polynomial about x = 0 of In(1 - x) is
gizmo_the_mogwai [7]

Answer:

\displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Quotient Rule]:                                                                                \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

MacLaurin/Taylor Polynomials

  • Approximating Transcendental and Elementary functions
  • MacLaurin Polynomial:                                                                                     \displaystyle P_n(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^{(n)}(0)}{n!}x^n
  • Taylor Polynomial:                                                                                            \displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^{(n)}(c)}{n!}(x - c)^n

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

<u />

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = ln(1 - x)

Center: x = 0

<em>n</em> = 3

<u>Step 2: Differentiate</u>

  1. [Function] 1st Derivative:                                                                                  \displaystyle f'(x) = \frac{1}{x - 1}
  2. [Function] 2nd Derivative:                                                                                \displaystyle f''(x) = \frac{-1}{(x - 1)^2}
  3. [Function] 3rd Derivative:                                                                                 \displaystyle f'''(x) = \frac{2}{(x - 1)^3}

<u>Step 3: Evaluate Functions</u>

  1. Substitute in center <em>x</em> [Function]:                                                                     \displaystyle f(0) = ln(1 - 0)
  2. Simplify:                                                                                                             \displaystyle f(0) = 0
  3. Substitute in center <em>x</em> [1st Derivative]:                                                             \displaystyle f'(0) = \frac{1}{0 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(0) = -1
  5. Substitute in center <em>x</em> [2nd Derivative]:                                                           \displaystyle f''(0) = \frac{-1}{(0 - 1)^2}
  6. Simplify:                                                                                                             \displaystyle f''(0) = -1
  7. Substitute in center <em>x</em> [3rd Derivative]:                                                            \displaystyle f'''(0) = \frac{2}{(0 - 1)^3}
  8. Simplify:                                                                                                             \displaystyle f'''(0) = -2

<u>Step 4: Write Taylor Polynomial</u>

  1. Substitute in derivative function values [MacLaurin Polynomial]:                 \displaystyle P_3(x) = \frac{0}{0!} + \frac{-1}{1!}x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3
  2. Simplify:                                                                                                             \displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

Topic: AP Calculus BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations

Book: College Calculus 10e

5 0
3 years ago
David owns a clothes shop on Rolling Street. Which of the following is a statistical question that David can be asked?
valina [46]

Answer:

i would say d.

Step-by-step explanation:

because depending on whether he is a competitor seller go's by the competition prices they might want to know how low is his cheapest shirt they might want to know  which one is cheaper, and he would also keep track of his sales

3 0
3 years ago
Read 2 more answers
Other questions:
  • An article fills 1/2 of a magazine page. A corresponding photo takes up 3/8 of the article. How much of the page is taken up by
    6·2 answers
  • What is the standard form of 46
    15·1 answer
  • Select the scenarios that will result in a positive slope. Select all that apply.
    6·2 answers
  • Whats -2(x-3)=5(2x+3)
    12·2 answers
  • (25 Points) What is the area of a triangle that has a base of 3 feet and a height of 6 feet?
    12·2 answers
  • Carpeting costs $9.99 a yard. If Jan buys 17.4 yards, how much will it cost her? (Round your answer to the nearest hundredth)
    11·1 answer
  • Jack has three coins C1, C2, and C3 with p1, p2, and p3 as their corresponding probabilitiesof landing heads. Jack flips coin C1
    11·1 answer
  • Answer please. Need help I'm giving a follow, a thanks, and a brainliest.
    13·2 answers
  • David loves to cook! He knew 21 recipes before starting cooking school and he learns 2 recipes
    14·2 answers
  • Write the explicit form of the arithmetic sequence shown below:<br> -4, 3, 10, ...
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!