Answer:
percent neans "out of 100"
Answer:
a) 8*88*10⁻⁶ ( 0.00088 %)
b) 0.2137 (21.37%)
Step-by-step explanation:
if the test contains 25 questions and each questions is independent of the others, then the random variable X= answer "x" questions correctly , has a binomial probability distribution. Then
P(X=x)= n!/((n-x)!*x!)*p^x*(1-p)^(n-x)
where
n= total number of questions= 25
p= probability of getting a question right = 1/4
then
a) P(x=n) = p^n = (1/4)²⁵ = 8*88*10⁻⁶ ( 0.00088 %)
b) P(x<5)= F(5)
where F(x) is the cumulative binomial probability distribution- Then from tables
P(x<5)= F(5)= 0.2137 (21.37%)
The y intercept is (0, 14) and the x intercept is (-112,0) all you have to do is just make y zero if you are trying to solve for x and the same for the x if you are trying to solve for y.
Answer:
No there cannot be.
Step-by-step explanation:
In explaining this question, I would like us to take into account who the barber is,
" the barber is the one who shaves all those, and those only, who do not shave themselves".
This barber cannot be in existence because who would shave him? If he should shave himself then there is a violation of the rule which says he shaves only those who do not shave themselves. If he shaves himself then he ceases to be a barber. And if he does not shave himself then he happens to be under those who must be shaved by the barber, because of what the rule says. But then he is the barber.
This lead us to a contradiction.
Neither is possible so there is no such barber.
Answer:
This is not an equation. It is an expression, you can't solve for x in an expression