Answer:
(a) y(x)=53+7x
(b) 179
Step-by-step explanation:
Since the first row has 60 seats and next row has 7 additional seats then we can represent it as
First row=60
Second row=60+7=67
Third row=67+7=74
The difference is always 7. If you deduct 7 from dirst row we get 60-7=53 seats
To get rhe number of seats in any row x then let y be the number of seats in row x
y=53+7(x)
For raw 1
Y=53+7(1)=60
For raw 2
Y=53+7(2)=67
Therefore, the formula for number of seats at any row will be
y(x)=53+7(x)
(b)
Using the above formula
y(x)=53+7(x)
Replace x with 18 hence
Y(18)=53+7*(18)=179 seats
Any of the 4 people can take the first seat
since it gets occupied by one person , the next seat can be occupied by any of the remaining 3
similarly, the next one has 2 possibilities and the last seat can only be occupied by the man who is left
so by the principal of multiplication, no. of ways equals 4! = 4×3×2×1 = 24 ways
8y - 6 = 5y + 12
- 5y - 5y
3y - 6 = 12
+ 6 + 6
3y = 18
3 3
y = 6
Parallel would be anything with the slope of 4x and perpendicular would be anything with the slope of 1/4
Answer:
Step-by-step explanation:
Hello!
Given the probabilities:
P(A₁)= 0.35
P(A₂)= 0.50
P(A₁∩A₂)= 0
P(BIA₁)= 0.20
P(BIA₂)= 0.05
a)
Two events are mutually exclusive when the occurrence of one of them prevents the occurrence of the other in one repetition of the trial, this means that both events cannot occur at the same time and therefore they'll intersection is void (and its probability zero)
Considering that P(A₁∩A₂)= 0, we can assume that both events are mutually exclusive.
b)
Considering that
you can clear the intersection from the formula
and apply it for the given events:


c)
The probability of "B" is marginal, to calculate it you have to add all intersections where it occurs:
P(B)= (A₁∩B) + P(A₂∩B)= 0.07 + 0.025= 0.095
d)
The Bayes' theorem states that:

Then:


I hope it helps!