If you only want to balance nuclear reactions, then you should know that number of nucleons are conserved before and after nuclear reaction. Also, charge is conserved as well.
Other things which are conserved in a nuclear reaction are:
Conservation of:
1. Parity
2. Spin
3. angular momentum(vector sum of intrinsic spin and orbital angular momentum)
4. linear momentum
5. Isotopic spin
6. Energy
Molecule is a chemical substance that cannot be broken down into another chemical substance.
In an undisturbed sequence of layers of rocks, the younger layers lie on top of the older layers
The volume (in mL) of calcium hydroxide, Ca(OH)₂ needed for the reaction is 19.8 mL
<h3>Balanced equation </h3>
2HCl + Ca(OH)₂ —> CaCl₂ + 2H₂O
From the balanced equation above,
- The mole ratio of the acid, HCl (nA) = 2
- The mole ratio of the base, Ca(OH)₂ (nB) = 1
<h3>How to determine the volume of Ca(OH)₂ </h3>
- Molarity of base, Ca(OH)₂ (Mb) = 1.48 M
- Volume of acid, HCl (Va) = 36 mL
- Molarity of acid, HCl (Ma) = 1.63 M
- Volume of base, Ca(OH)₂ (Vb) =?
MaVa / MbVb = nA / nB
(1.63 × 36) / (1.48 × Vb) = 2
58.68 / (1.48 × Vb) = 2
Cross multiply
2 × 1.48 × Vb = 58.68
2.96 × Vb = 58.68
Divide both side by 2.96
Vb = 58.68 / 2.96
Vb = 19.8 mL
Learn more about titration:
brainly.com/question/14356286
#SPJ1
Answer is: 4,4 grams <span>of carbon dioxide gas would be produced.
</span>Chemical reaction: CaCO₃ + 2HCl → CaCl₂ + CO₂ + H₂O.
m(CaCO₃) = 10 g.
n(CaCO₃) = 10 g ÷ 100 g/mol.
n(CaCO₃) = 0,1 mol.
From chemical reaction: n(CaCO₃) : n(CO₂) = 1 : 1.
n(CO₂) = 0,1 mol.
m(CO₂) = n(CO₂) · M(CO₂).
m(CO₂) = 0,1 mol· 44 g/mol.
m(CO₂) = 4,4 g.