All you have to do is follow the steps shown in the pictures and you’ll get your answer,
Answer:
Step-by-step explanation:
yes that
Answer:
Step-by-step explanation:
The given expression is
(4×10^8)(4×10^-7)/(4×10^8)
Considering the property of exponents which is expressed as
y^a × y^b = y^(a + b)
Applying the above rule to the denominator of the given expression, it becomes
4×10^8 × 4×10^-7 = 16 × 10^(8 + - 7)
= 16 × 10^(8 - 7)
= 16 × 10 = 160
The expression becomes
16 × 10/(4×10^8)
We would apply the property of exponents which is expressed as
y^a ÷ y^b = y^(a - b)
It becomes
16/4 × 10^(1 - 8)
= 4 × 10^-7
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>
<em>H</em><em>ope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em><em>.</em><em>.</em>
<em>G</em><em>ood</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>
<em>~</em><em>p</em><em>r</em><em>a</em><em>g</em><em>y</em><em>a</em>
Answer:
The area under the function
.
Step-by-step explanation:
We want to find the Riemann Sum for
with 4 sub-intervals, using right endpoints.
A Riemann Sum is a method for approximating the total area underneath a curve on a graph, otherwise known as an integral.
The Right Riemann Sum is given by:

where 
From the information given we know that a = 1, b = 3, n = 4.
Therefore, 
We need to divide the interval [1, 3] into 4 sub-intervals of length
:
![\left[1, \frac{3}{2}\right], \left[\frac{3}{2}, 2\right], \left[2, \frac{5}{2}\right], \left[\frac{5}{2}, 3\right]](https://tex.z-dn.net/?f=%5Cleft%5B1%2C%20%5Cfrac%7B3%7D%7B2%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B3%7D%7B2%7D%2C%202%5Cright%5D%2C%20%5Cleft%5B2%2C%20%5Cfrac%7B5%7D%7B2%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B5%7D%7B2%7D%2C%203%5Cright%5D)
Now, we just evaluate the function at the right endpoints:




Next, we use the Right Riemann Sum formula
