Answer:
Numerator = 2(b^2+a^2) or equivalently 2b^2+2a^2
Denominator = (b+a)^2*(b-a), or equivalently b^3+ab^2-a^2b0-a^3
Step-by-step explanation:
Let
S = 2b/(b+a)^2 + 2a/(b^2-a^2) factor denominator
= 2b/(b+a)^2 + 2a/((b+a)(b-a)) factor denominators
= 1/(b+a) ( 2b/(b+a) + 2a/(b-a)) find common denominator
= 1/(b+a) ((2b*(b-a) + 2a*(b+a))/((b+a)(b-a)) expand
= 1/(b+a)(2b^2-2ab+2ab+2a^2)/((b+a)(b-a)) simplify & factor
= 2/(b+a)(b^2+a^2)/((b+a)(b-a)) simplify & rearrange
= 2(b^2+a^2)/((b+a)^2(b-a))
Numerator = 2(b^2+a^2) or equivalently 2b^2+2a^2
Denominator = (b+a)^2*(b-a), or equivalently b^3+ab^2-a^2b0-a^3
Answer: I think 13
Step-by-step explanation:
Answer: fluffy = 33yrs
Spot = 19 yrs
Skampy = 39 yrs
Step-by-step explanation:
Let fluffy = x
Spot = y
Skampy =z
x + y + z = 91 -------1
x -14 =y ------2
z = x + 6 --------3
Put eqn 2 and 3 in eqn 1
x + x - 14 + x + 6 = 91
3x = 99
x = 33
y = 33-14= 19
z = 33+6 = 39
To make calculation easier, we first multiply
1.35 × 100 = 135
then we need to find how many groups of 5 are there in 135.
to do so, we simply take
135 ÷ 5 = 27
therefore, the answer is <u>27.</u>