Step-by-step explanation:
is given
definition of <u>bisect</u>
<u />
are both given
<u />
definition of perpendicular
because all right angles are congruent
vertical angles are congruent
ASA (angle-side-angle)
CPCTC (corresponding parts of congruent triangles are congruent)
Answer:
The answer is below
Step-by-step explanation:
A function show the relationship between an independent variable and a dependent variable. The independent variable (input) does not depend on other variables while the dependent variable (output) depend on other variables.
In this question, amount of water in tank is dependent variable and the time taken is the independent variable. Let y represent amount of water in tank and x represent the time it has been draining. Therefore:
a) This can be represented by the equation:
y = 450 - 20x
At 7 minutes (x = 7)
y = 450 - 20(7)
y = 310 gallons
b) For 200 gallons (y = 200), the time taken is:
200 = 450 - 20x
200 - 450 = -20x
-20x = -250
x = -250/-20
x = 12.5 minutes
c) y = 450 - 20x
d) The graph was plotted using geogebra onling graphing calculator.
e) When the tank is empty, y = 0, hence
0 = 450 - 20x
20x = 450
x = 450 / 20
x = 22.5 minutes
Answer:
yes
Step-by-step explanation:
well im going to assume that the original equation is y = -3/2x - 2
if that is the case, then if you plug in the numbers
4 = -3/2(-4) - 2
4 = 6 - 2
4 = 4
so yes when x is -4, y is 4; (x, y) (-4, 4)
Nose rkrbtje de donde salió la luz de
Answer:
![\textsf{Midpoint rule}: \quad \dfrac{2\pi}{\sqrt[3]{2}}](https://tex.z-dn.net/?f=%5Ctextsf%7BMidpoint%20rule%7D%3A%20%5Cquad%20%5Cdfrac%7B2%5Cpi%7D%7B%5Csqrt%5B3%5D%7B2%7D%7D)


Step-by-step explanation:
<u>Midpoint rule</u>
![\displaystyle \int_{a}^{b} f(x) \:\:\text{d}x \approx h\left[f(x_{\frac{1}{2}})+f(x_{\frac{3}{2}})+...+f(x_{n-\frac{3}{2}})+f(x_{n-\frac{1}{2}})\right]\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_%7Ba%7D%5E%7Bb%7D%20f%28x%29%20%5C%3A%5C%3A%5Ctext%7Bd%7Dx%20%5Capprox%20h%5Cleft%5Bf%28x_%7B%5Cfrac%7B1%7D%7B2%7D%7D%29%2Bf%28x_%7B%5Cfrac%7B3%7D%7B2%7D%7D%29%2B...%2Bf%28x_%7Bn-%5Cfrac%7B3%7D%7B2%7D%7D%29%2Bf%28x_%7Bn-%5Cfrac%7B1%7D%7B2%7D%7D%29%5Cright%5D%5C%5C%5C%5C%20%5Cquad%20%5Ctextsf%7Bwhere%20%7Dh%3D%5Cdfrac%7Bb-a%7D%7Bn%7D)
<u>Trapezium rule</u>
![\displaystyle \int_{a}^{b} y\: \:\text{d}x \approx \dfrac{1}{2}h\left[(y_0+y_n)+2(y_1+y_2+...+y_{n-1})\right] \quad \textsf{where }h=\dfrac{b-a}{n}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_%7Ba%7D%5E%7Bb%7D%20y%5C%3A%20%5C%3A%5Ctext%7Bd%7Dx%20%5Capprox%20%5Cdfrac%7B1%7D%7B2%7Dh%5Cleft%5B%28y_0%2By_n%29%2B2%28y_1%2By_2%2B...%2By_%7Bn-1%7D%29%5Cright%5D%20%5Cquad%20%5Ctextsf%7Bwhere%20%7Dh%3D%5Cdfrac%7Bb-a%7D%7Bn%7D)
<u>Simpson's rule</u>

<u>Given definite integral</u>:
![\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5E%7B2%20%5Cpi%7D_0%20%5Csqrt%5B3%5D%7B%5Csin%5E2%20%28x%29%7D%5C%3A%5C%3A%5Ctext%7Bd%7Dx)
Therefore:
Calculate the subdivisions:

<u>Midpoint rule</u>
Sub-intervals are:
![\left[0, \dfrac{1}{2}\pi \right], \left[\dfrac{1}{2}\pi, \pi \right], \left[\pi , \dfrac{3}{2}\pi \right], \left[\dfrac{3}{2}\pi, 2 \pi \right]](https://tex.z-dn.net/?f=%5Cleft%5B0%2C%20%5Cdfrac%7B1%7D%7B2%7D%5Cpi%20%5Cright%5D%2C%20%5Cleft%5B%5Cdfrac%7B1%7D%7B2%7D%5Cpi%2C%20%5Cpi%20%5Cright%5D%2C%20%5Cleft%5B%5Cpi%20%2C%20%5Cdfrac%7B3%7D%7B2%7D%5Cpi%20%5Cright%5D%2C%20%5Cleft%5B%5Cdfrac%7B3%7D%7B2%7D%5Cpi%2C%202%20%5Cpi%20%5Cright%5D)
The midpoints of these sub-intervals are:

Therefore:
![\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{2}\pi \left[f \left(\dfrac{1}{4} \pi \right)+f \left(\dfrac{3}{4} \pi \right)+f \left(\dfrac{5}{4} \pi \right)+f \left(\dfrac{7}{4} \pi \right)\right]\\\\& = \dfrac{1}{2}\pi \left[\sqrt[3]{\dfrac{1}{2}} +\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}\right]\\\\ & = \dfrac{2\pi}{\sqrt[3]{2}}\\\\& = 4.986967483...\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%5Cdisplaystyle%20%5Cint%5E%7B2%20%5Cpi%7D_0%20%5Csqrt%5B3%5D%7B%5Csin%5E2%20%28x%29%7D%5C%3A%5C%3A%5Ctext%7Bd%7Dx%20%26%20%5Capprox%20%5Cdfrac%7B1%7D%7B2%7D%5Cpi%20%5Cleft%5Bf%20%5Cleft%28%5Cdfrac%7B1%7D%7B4%7D%20%5Cpi%20%5Cright%29%2Bf%20%5Cleft%28%5Cdfrac%7B3%7D%7B4%7D%20%5Cpi%20%5Cright%29%2Bf%20%5Cleft%28%5Cdfrac%7B5%7D%7B4%7D%20%5Cpi%20%5Cright%29%2Bf%20%5Cleft%28%5Cdfrac%7B7%7D%7B4%7D%20%5Cpi%20%5Cright%29%5Cright%5D%5C%5C%5C%5C%26%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%5Cpi%20%5Cleft%5B%5Csqrt%5B3%5D%7B%5Cdfrac%7B1%7D%7B2%7D%7D%20%2B%5Csqrt%5B3%5D%7B%5Cdfrac%7B1%7D%7B2%7D%7D%2B%5Csqrt%5B3%5D%7B%5Cdfrac%7B1%7D%7B2%7D%7D%2B%5Csqrt%5B3%5D%7B%5Cdfrac%7B1%7D%7B2%7D%7D%5Cright%5D%5C%5C%5C%5C%20%26%20%3D%20%5Cdfrac%7B2%5Cpi%7D%7B%5Csqrt%5B3%5D%7B2%7D%7D%5C%5C%5C%5C%26%20%3D%204.986967483...%5Cend%7Baligned%7D)
<u>Trapezium rule</u>

![\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{2} \cdot \dfrac{1}{2} \pi \left[(0+0)+2(1+0+1)\right]\\\\& = \dfrac{1}{4} \pi \left[4\right]\\\\& = \pi\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%5Cdisplaystyle%20%5Cint%5E%7B2%20%5Cpi%7D_0%20%5Csqrt%5B3%5D%7B%5Csin%5E2%20%28x%29%7D%5C%3A%5C%3A%5Ctext%7Bd%7Dx%20%26%20%20%5Capprox%20%5Cdfrac%7B1%7D%7B2%7D%20%5Ccdot%20%5Cdfrac%7B1%7D%7B2%7D%20%5Cpi%20%5Cleft%5B%280%2B0%29%2B2%281%2B0%2B1%29%5Cright%5D%5C%5C%5C%5C%26%20%3D%20%5Cdfrac%7B1%7D%7B4%7D%20%5Cpi%20%5Cleft%5B4%5Cright%5D%5C%5C%5C%5C%26%20%3D%20%5Cpi%5Cend%7Baligned%7D)
<u>Simpson's rule</u>
<u />
<u />![\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(0+4(1)+2(0)+4(1)+0\right)\\\\& = \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(8\right)\\\\& = \dfrac{4}{3} \pi\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%5Cdisplaystyle%20%5Cint%5E%7B2%20%5Cpi%7D_0%20%5Csqrt%5B3%5D%7B%5Csin%5E2%20%28x%29%7D%5C%3A%5C%3A%5Ctext%7Bd%7Dx%20%26%20%5Capprox%20%5Cdfrac%7B1%7D%7B3%7D%5Ccdot%20%5Cdfrac%7B1%7D%7B2%7D%20%5Cpi%20%5Cleft%280%2B4%281%29%2B2%280%29%2B4%281%29%2B0%5Cright%29%5C%5C%5C%5C%26%20%3D%20%5Cdfrac%7B1%7D%7B3%7D%5Ccdot%20%5Cdfrac%7B1%7D%7B2%7D%20%5Cpi%20%5Cleft%288%5Cright%29%5C%5C%5C%5C%26%20%3D%20%5Cdfrac%7B4%7D%7B3%7D%20%5Cpi%5Cend%7Baligned%7D)