1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adoni [48]
3 years ago
6

I need healpp pleaseeeee

Mathematics
2 answers:
solong [7]3 years ago
7 0
I don’t really understand
DENIUS [597]3 years ago
5 0

Answer:

I don't get it...

Step-by-step explanation:

Please elaborate on the question...

You might be interested in
Please help me prove that ED is congruent to BA! I thought I had it right by proving right and vertical angles, but I’m missing
Vikki [24]

Step-by-step explanation:

\overline{DA} \text{ bisects } \overline{EB}     is given

\overline{BC} \cong \overline{EC}  definition of <u>bisect</u>

<u />\overline{EB} \perp \overline{ED}, \, \overline{EB} \perp \overline{BA}  are both given

<u />\angle B, \, \angle E \text{ are right angles}  definition of perpendicular

\angle B \cong \angle E   because all right angles are congruent

\angle{ACB} \cong \angle{DCE}  vertical angles are congruent

\triangle{ACB} \cong \triangle{DCE}   ASA (angle-side-angle)

\overline{ED} \cong \overline{BA}  CPCTC (corresponding parts of congruent triangles are congruent)

5 0
3 years ago
A 450-gallon tank full of water is draining at a rate of 20 gallons per minute.
Stels [109]

Answer:

The answer is below

Step-by-step explanation:

A function show the relationship between an independent variable and a dependent variable. The independent variable (input) does not depend on other variables while the dependent variable (output) depend on other variables.

In this question, amount of water in tank is dependent variable and the time taken is the independent variable. Let y represent amount of water in tank and x represent the time it has been draining. Therefore:

a) This can be represented by the equation:

y = 450 -  20x

At 7 minutes (x = 7)

y = 450 - 20(7)

y = 310 gallons

b) For 200 gallons (y = 200), the time taken is:

200 = 450 - 20x

200 - 450 = -20x

-20x = -250

x = -250/-20

x = 12.5 minutes

c) y = 450 - 20x

d) The graph was plotted using geogebra onling graphing calculator.

e) When the tank is empty, y = 0, hence

0 = 450 - 20x

20x = 450

x = 450 / 20

x = 22.5 minutes

6 0
3 years ago
Does 4=-3/2(-4)-2 equal out to (-4,4)
Marizza181 [45]

Answer:

yes

Step-by-step explanation:

well im going to assume that the original equation is y = -3/2x - 2

if that is the case, then if you plug in the numbers

4 = -3/2(-4) - 2

4 = 6 - 2

4 = 4

so yes when x is -4, y is 4; (x, y) (-4, 4)

5 0
4 years ago
Find the 15th term of the arithmetic sequence whose common difference is d=9 and whose first term is a, = 2.
Alenkinab [10]
Nose rkrbtje de donde salió la luz de
6 0
3 years ago
For the following integral, find the approximate value of the integral with 4 subdivisions using midpoint, trapezoid, and Simpso
PIT_PIT [208]

Answer:

\textsf{Midpoint rule}: \quad \dfrac{2\pi}{\sqrt[3]{2}}

\textsf{Trapezium rule}: \quad \pi

\textsf{Simpson's rule}: \quad \dfrac{4 \pi}{3}

Step-by-step explanation:

<u>Midpoint rule</u>

\displaystyle \int_{a}^{b} f(x) \:\:\text{d}x \approx h\left[f(x_{\frac{1}{2}})+f(x_{\frac{3}{2}})+...+f(x_{n-\frac{3}{2}})+f(x_{n-\frac{1}{2}})\right]\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Trapezium rule</u>

\displaystyle \int_{a}^{b} y\: \:\text{d}x \approx \dfrac{1}{2}h\left[(y_0+y_n)+2(y_1+y_2+...+y_{n-1})\right] \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Simpson's rule</u>

\displaystyle \int_{a}^{b} y \:\:\text{d}x \approx \dfrac{1}{3}h\left(y_0+4y_1+2y_2+4y_3+2y_4+...+2y_{n-2}+4y_{n-1}+y_n\right)\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Given definite integral</u>:

\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x

Therefore:

  • a = 0
  • b = 2π

Calculate the subdivisions:

\implies h=\dfrac{2 \pi - 0}{4}=\dfrac{1}{2}\pi

<u>Midpoint rule</u>

Sub-intervals are:

\left[0, \dfrac{1}{2}\pi \right], \left[\dfrac{1}{2}\pi, \pi \right], \left[\pi , \dfrac{3}{2}\pi \right], \left[\dfrac{3}{2}\pi, 2 \pi \right]

The midpoints of these sub-intervals are:

\dfrac{1}{4} \pi, \dfrac{3}{4} \pi, \dfrac{5}{4} \pi, \dfrac{7}{4} \pi

Therefore:

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{2}\pi \left[f \left(\dfrac{1}{4} \pi \right)+f \left(\dfrac{3}{4} \pi \right)+f \left(\dfrac{5}{4} \pi \right)+f \left(\dfrac{7}{4} \pi \right)\right]\\\\& = \dfrac{1}{2}\pi \left[\sqrt[3]{\dfrac{1}{2}} +\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}\right]\\\\ & = \dfrac{2\pi}{\sqrt[3]{2}}\\\\& = 4.986967483...\end{aligned}

<u>Trapezium rule</u>

\begin{array}{| c | c | c | c | c | c |}\cline{1-6} &&&&&\\ x & 0 & \dfrac{1}{2}\pi & \pi & \dfrac{3}{2} \pi & 2 \pi \\ &&&&&\\\cline{1-6} &&&&& \\y & 0 & 1 & 0 & 1 & 0\\ &&&&&\\\cline{1-6}\end{array}

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x &  \approx \dfrac{1}{2} \cdot \dfrac{1}{2} \pi \left[(0+0)+2(1+0+1)\right]\\\\& = \dfrac{1}{4} \pi \left[4\right]\\\\& = \pi\end{aligned}

<u>Simpson's rule</u>

<u />

<u />\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(0+4(1)+2(0)+4(1)+0\right)\\\\& = \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(8\right)\\\\& = \dfrac{4}{3} \pi\end{aligned}

6 0
2 years ago
Other questions:
  • PLS DO THIS ASAP WILL MARK BRAINLEIST MY TEST IS TIMED
    12·1 answer
  • Yuvraj planned to give a party to 24 people. He ordered food in separate packages for each of the 24 people. But only 15 people
    13·1 answer
  • The difference of a number and thirty-six is seven. Algebraic expression
    6·1 answer
  • Find the missing side length assuming lines that appear to be tangent are tangent. Show work on piece of paper.
    6·1 answer
  • Please help.....no one would help me so PLZZZZ
    12·1 answer
  • Needdddddddddddddd helpppppppp
    5·1 answer
  • 10 POINTS FOR WHOEVER ANWSERS!
    9·1 answer
  • The number of visitors to a certain Web site triples every month. The number of visitors is modeled by the expression 900 * 3^m​
    11·1 answer
  • Help pls!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    8·1 answer
  • Find an equation for the line with slope
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!