Answer: 8648640 ways
Step-by-step explanation:
Number of positions = 7
Number of eligible candidates = 13
This can be done by solving the question using the combination Formula for selection in which we use the combination formula to choose 7 candidates amomg the possible 13.
The combination Formula is denoted as:
nCr = n! / (n-r)! * r!
Where n = total number of possible options.
r = number of options to be selected.
Hence, selecting 7 candidates from 13 becomes:
13C7 = 13! / (13-7)! * 7!
13C7 = 1716.
Considering the order they can come in, they can come in 7! Orders. We multiply this order by the earlier answer we calculated. This give: 1716 * 7! = 8648640
Answer:
<em>If statement(1) holds true, it is correct that </em>
<em> is an integer.</em>
<em>If statement(2) holds true, it is not necessarily correct that </em>
<em> is an integer.</em>
<em></em>
Step-by-step explanation:
Given two positive integers
and
.
To check whether
is an integer:
Condition (1):
Every factor of
is also a factor of
.

Let us consider an example:

which is an integer.
Actually, in this situation
is a factor of
.
Condition 2:
Every prime factor of <em>s</em> is also a prime factor of <em>r</em>.
(But the powers of prime factors need not be equal as we are not given the conditions related to powers of prime factors.)
Let


which is not an integer.
So, the answer is:
<em>If statement(1) holds true, it is correct that </em>
<em> is an integer.</em>
<em>If statement(2) holds true, it is not necessarily correct that </em>
<em> is an integer.</em>
<em></em>
For this case we have that by definition, the Pythagorean theorem states that:

Where:
a, b: Are the legs
c: It is the hypotenuse
According to the figure we have to:

Substituting in the formula we have:

Answer:
Option D
Answer:
There were 6 benches in park 1 and 18 benches in park 2.
Step-by-step explanation:
Let x be the no of benches in Park 1 and y in park 2.
Given that there are 12 more benches in park 2 than 1
Writing this in equation form, we have y = x+12 ... i
Next is if 2 benches were transferred from park 2 to park 1, then we have
x+2 in park 1 and y-2 in park 2.
Given that y-2 = twice that of x+2
Or y-2 = 2x+4 ... ii
Rewrite by adding 2 to both sides of equation ii.
y = 2x+6 ... iii
i-iii gives 0 = -x+6
Or x =6
Substitute in i, to have y = 6+12 = 18
Verify:
Original benches 6 and 18.
18 = 6+12 hence I condition is satisfied
18-2 = 2(6+2)
II is also satisfied.