11-2x would be the answer u are looking for. Hope this helps!
he volume of the solid under a surface
z
=
f
(
x
,
y
)
and above a region D is given by the formula
∫
∫
D
f
(
x
,
y
)
d
A
.
Here
f
(
x
,
y
)
=
6
x
y
. The inequalities that define the region D can be found by making a sketch of the triangle that lies in the
x
y
−
plane. The bounding equations of the triangle are found using the point-slope formula as
x
=
1
,
y
=
1
and
y
=
−
x
3
+
7
3
.
Here is a sketch of the triangle:
Intersecting Region
The inequalities that describe D are given by the sketch as:
1
≤
x
≤
4
and
1
≤
y
≤
−
x
3
+
7
3
.
Therefore, volume is
V
=
∫
4
1
∫
−
x
3
+
7
3
1
6
x
y
d
y
d
x
=
∫
4
1
6
x
[
y
2
2
]
−
x
3
+
7
3
1
d
x
=
3
∫
4
1
x
[
y
2
]
−
x
3
+
7
3
1
d
x
=
3
∫
4
1
x
[
49
9
−
14
x
9
+
x
2
9
−
1
]
d
x
=
3
∫
4
1
40
x
9
−
14
x
2
9
+
x
3
9
d
x
=
3
[
40
x
2
18
−
14
x
3
27
+
x
4
36
]
4
1
=
3
[
(
640
18
−
896
27
+
256
36
)
−
(
40
18
−
14
27
+
1
36
)
]
=
23.25
.
Volume is
23.25
.
Answer:
Se=1.2
Step-by-step explanation:
The standard error is the standard deviation of a sample population. "It measures the accuracy with which a sample represents a population".
The central limit theorem (CLT) states "that the distribution of sample means approximates a normal distribution, as the sample size becomes larger, assuming that all samples are identical in size, and regardless of the population distribution shape"
The sample mean is defined as:

And the distribution for the sample mean is given by:

Let X denotes the random variable that measures the particular characteristic of interest. Let, X1, X2, …, Xn be the values of the random variable for the n units of the sample.
As the sample size is large,(>30) it can be assumed that the distribution is normal. The standard error of the sample mean X bar is given by:

If we replace the values given we have:

So then the distribution for the sample mean
is:

Answer:
9,424.8 cm^3
Step-by-step explanation:
V = A of circle x h
= πr^2 x h
=(3.1416)(10)^2 x 30
=(3.1416)(100) x 30
=314.16 x 30
=9429.8
Answer:
C. 437 mm^2
Step-by-step explanation:
Area = 1/2bh
A = 1/2(38*23)
A = 437