Answer:
The correct answer is case-control study.
Explanation:
In a case-control study, two groups of the population are used, in which one group is kept as control, and the other is known as the experimental group that encounters with a specific disease or an outcome. With the help of this study, one can expose the groups to various or single outcomes.
In the given case, a study is done in which an advertisement on a ban on smoking is encouraged by the non-smokers at the alcohol sale points but not by smokers, in the process a random digit dialing method was used. This random digit dialing method is an illustration of a case-control study, in which the survey of the individuals is done regarding the ban on smoking.
The answer to this question would be: <span>proceed through the trachea, bronchi, and then bronchioles.
After going pass the oropharynx the air will be going to trachea, </span>bronchi, bronchioles and will end in the alveolus. In alveolus, the oxygen from the air will diffuse to the blood while carbon dioxide will diffuse to the alveolus. The carbon dioxide is going out of the lungs when doing expiration.
Answer:
Climate change is rapidly becoming known as a tangible issue that must be addressed to avoid major environmental consequences in the future. Recent change in public opinion has been caused by the physical signs of climate change–melting glaciers, rising sea levels, more severe storm and drought events, and hotter average global temperatures annually. Transportation is a major contributor of carbon dioxide (CO2) and other greenhouse gas emissions from human activity, accounting for approximately 14 percent of total anthropogenic emissions globally and about 27 percent in the U.S.
Fortunately, transportation technologies and strategies are emerging that can help to meet the climate challenge. These include automotive and fuel technologies, intelligent transportation systems (ITS), and mobility management strategies that can reduce the demand for private vehicles. While the climate change benefits of innovative engine and vehicle technologies are relatively well understood, there are fewer studies available on the energy and emission impacts of ITS and mobility management strategies. In the future, ITS and mobility management will likely play a greater role in reducing fuel consumption. Studies are often based on simulation models, scenario analysis, and limited deployment experience. Thus, more research is needed to quantify potential impacts. Of the nine ITS technologies examined, traffic signal control, electronic toll collection, bus rapid transit, and traveler information have been deployed more widely and demonstrated positive impacts (but often on a limited basis). Mobility management approaches that have established the greatest CO2 reduction potential, to date, include road pricing policies (congestion and cordon) and carsharing (short-term auto access). Other approaches have also indicated CO2 reduction potential including: low-speed modes, integrated regional smart cards, park-and-ride facilities, parking cash out, smart growth, telecommuting, and carpooling.
Explanation: