Answer:
(6, -4)
Step-by-step explanation:
If ABCD is dilated by a factor of 2, you multiply the coordinates by 2. For the coordinate D', you would multiply 3 by 2 to get 6 and you would multiply -2 by 2 to get -4. Answer: (6, -4)
<u>Answer:</u>
B. He multiplied the dividend by 100 instead of 10.
<u>Step-by-step explanation:</u>
Chen had to divide
by
. To make it easier to divide, he thought of multiplying both the dividend and the divisor by 10.
Chen multiplied the divisor by 10 but mistakenly multiplied the dividend by 100 instead of 10.
So his whole division problem was changed.
Therefore, the correct answer option is B. He multiplied the dividend by 100 instead of 10.
Answer:
Since the slopes of the two equations are equivalent, the basketballs' paths are parallel.
Step-by-step explanation:
Remember that:
- Two lines are parallel if their slopes are equivalent.
- Two lines are perpendicular if their slopes are negative reciprocals of each other.
- And two lines are neither if neither of the two cases above apply.
So, let's find the slope of each equation.
The first basketball is modeled by:

We can convert this into slope-intercept form. Subtract 3<em>x</em> from both sides:

And divide both sides by four:

So, the slope of the first basketball is -3/4.
The second basketball is modeled by:

Again, let's convert this into slope-intercept form. Add 6<em>x</em> to both sides:

And divide both sides by negative eight:

So, the slope of the second basketball is also -3/4.
Since the slopes of the two equations are equivalent, the basketballs' paths are parallel.
Answer:
first we find the common difference.....do this by subtracting the first term from the second term. (9 - 3 = 6)...so basically, ur adding 6 to every number to find the next number.
we will be using 2 formulas....first, we need to find the 34th term (because we need this term for the sum formula)
an = a1 + (n-1) * d
n = the term we want to find = 34
a1 = first term = 3
d = common difference = 6
now we sub
a34 = 3 + (34-1) * 6
a34 = 3 + (33 * 6)
a34 = 3 + 198
a34 = 201
now we use the sum formula
Sn = (n (a1 + an)) / 2
S34 = (34(3 + 201))/2
s34 = (34(204)) / 2
s34 = 6936/2
s34 = 3468 <=== the sum of the first 34 terms: