Answer:
1. t = 0.0819s
2. W = 0.25N
3. n = 36
4. y(x , t)= Acos[172x + 2730t]
Explanation:
1) The given equation is

The relationship between velocity and propagation constant is

v = 15.87m/s
Time taken, 

t = 0.0819s
2)
The velocity of transverse wave is given by


mass of string is calculated thus
mg = 0.0125N

m = 0.00128kg


0.25N
3)
The propagation constant k is

hence

0.036 m
No of wavelengths, n is

n = 36
4)
The equation of wave travelling down the string is
![y(x, t)=Acos[kx -wt]\\\\becomes\\\\y(x , t)= Acos[(172 rad.m)x + (2730 rad.s)t]](https://tex.z-dn.net/?f=y%28x%2C%20t%29%3DAcos%5Bkx%20-wt%5D%5C%5C%5C%5Cbecomes%5C%5C%5C%5Cy%28x%20%2C%20t%29%3D%20Acos%5B%28172%20rad.m%29x%20%2B%20%282730%20rad.s%29t%5D)
![without, unit\\\\y(x , t)= Acos[172x + 2730t]](https://tex.z-dn.net/?f=without%2C%20unit%5C%5C%5C%5Cy%28x%20%2C%20t%29%3D%20Acos%5B172x%20%2B%202730t%5D)
Yes the Earth is bigger than the Moon.
The moon is one-quarter the size of Earth.
The answer would be Newton’s Second Law
Answer:
Explanation:
Given that,
Mass per unit length is
μ = 4.87g/cm
μ=4.87g/cm × 1kg/1000g × 100cm/m
μ = 0.487kg/m
Tension
τ = 16.7N
Amplitude
A = 0.101mm
Frequency
f = 71 Hz
The wave is traveling in the negative direction
Given the wave form
y(x,t) = ym• Sin(kx + ωt)
A. Find ym?
ym is the amplitude of the waveform and it is given as
ym = A = 0.101mm
ym = 0.101mm
B. Find k?
k is the wavenumber and it can be determined using
k = 2π / λ
Then, we need to calculate the wavelength λ using
V = fλ
Then, λ = V/f
We have the frequency but we don't have the velocity, then we need to calculate the velocity using
v = √(τ/μ)
v = √(16.7/0.487)
v = 34.29
v = 5.86 m/s
Then, we can know the wavelength
λ = V/f = 5.86 / 71
λ = 0.0825 m
So, we can know the wavenumber
k = 2π/λ
k = 2π / 0.0825
k = 76.18 rad/m
C. Find ω?
This is the angular frequency and it can be determined using
ω = 2πf
ω = 2π × 71
ω = +446.11 rad/s
D. The angular frequency is positive (+) because the direction of propagation of wave is in the negative direction of x