<span>A. No sound is heard
A*sin(wt)+(-A)*sin(wt)=0 - no sound
</span>
Answer:
The forces experienced by the middle particle are attractive, and the net force will remain the same (0) if and only if the distances of the sides particles to the middle particle are the same.
Explanation:
In example 20.3 the forces experienced by the middle particle are repulsive because all the particles are positive, for the case in which the particles on the sides are replaced for negative charge particles the forces experienced by the middle particle are attractive. Regarding the net force, because we don't know the distances we can not give a definitive answer, what we can say is that if the distances from the middle particle to the sides particles are the same the net force is zero for both cases (remain unchanged).
To solve this problem we will start by considering how to calculate the apparent weight. On the sphere this will then be given that the real weight is the sum of the apparent weight and the Buoyant Force. Therefore we will have to

Here
= True Weight
= Apparent Weight
= Buoyant Force
If we seek to find the apparent weight we will have to,


Remember that
V = Volume (Volume Sphere)
= Density (At this case water density)
g = Gravitational acceleration


Therefore the apparent weight will be 0.1526N
If you look at the picture you will see how, but the answer is 0.5 Hz.