1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga2289 [7]
2 years ago
10

Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.) cos(x) sin(2x

) sin(x) dx
Mathematics
1 answer:
Tasya [4]2 years ago
6 0

Answer:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{4x-sin(4x)}{16} +c

Step-by-step explanation:

Given

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx

Required

Evaluate

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx

Rewrite as:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {cos(x)\ sin(x)\ sin(2x)} \, dx

In trigonometry:

sin(2x) = 2\ sin(x)\ cos(x)

Divide both sides by 2

\frac{1}{2}sin(2x) = \frac{2\ sin(x)\ cos(x) }{2}

\frac{1}{2}sin(2x) = sin(x)\ cos(x)

\frac{1}{2}sin(2x) = cos(x)\ sin(x)

Substitute \frac{1}{2}sin(2x) for cos(x)\ sin(x)

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {\frac{1}{2}sin(2x)\ sin(2x)} \, dx

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {\frac{1}{2}sin^2(2x)} \, dx

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(2x)} \, dx

Let u = 2x

Differentiate:

du = 2 \ dx

Make dx the subject

dx = \frac{1}{2}du

Substitute \frac{1}{2}du for dx

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(2x)} \, \frac{1}{2}du

Substitute 2x for u

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(u)} \, \frac{1}{2}du

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}*\frac{1}{2}\int\limits {sin^2(u)} \, du

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}\int\limits {sin^2(u)} \, du

At this point, we apply the reduction formula:

Which is:

\int\limits {sin^n(u)} \, du = \frac{n-1}{2}\int\limits sin^{n-2}(u)\ du\ - \frac{cos(u)sin^{n-1}(u)}{n}\du

Let n = 2; So, we have:

\int\limits {sin^2(u)} \, du = \frac{2-1}{2}\int\limits sin^{2-2}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du

\int\limits {sin^2(u)} \, du = \frac{2-1}{2}\int\limits sin^{0}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du

\int\limits {sin^2(u)} \, du = \frac{1}{2}\int\limits sin^{0}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du

sin^0(u) = 1

So, we have:

\int\limits {sin^2(u)} \, du = \frac{1}{2}\int\limits 1\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du

Integrate 1 with respect to u

\int\limits {sin^2(u)} \, du = \frac{1}{2}u - \frac{cos(u)sin^{2-1}(u)}{2}\du

\int\limits {sin^2(u)} \, du = \frac{1}{2}u - \frac{cos(u)sin(u)}{2}\du

Recall that:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}\int\limits {sin^2(u)} \, du

So, we have:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}[ \frac{1}{2}u - \frac{cos(u)sin(u)}{2}\du]

Open bracket

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{8}u - \frac{cos(u)sin(u)}{8}

Recall that:  u = 2x and  du = 2 \ dx      dx = \frac{1}{2}du

So, the expression becomes:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{8}2x - \frac{cos(2x)sin(2x)}{8}

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8}

Add constant c

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8} +c

----------------------------------------------------------------------------------------

In trigonometry:

sin(2\theta) = 2sin(\theta)cos(\theta)

Divide both sides by 2

\frac{1}{2}sin(2\theta) = \frac{2sin(\theta)cos(\theta)}{2}

\frac{1}{2}sin(2\theta) = sin(\theta)cos(\theta)

Replace 2x with \theta

\frac{1}{2}sin(2*2x) = sin(2x)cos(2x)

\frac{1}{2}sin(4x) = sin(2x)cos(2x)

----------------------------------------------------------------------------------------

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8} +c becomes

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{sin(4x)}{2*8} +c

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{sin(4x)}{16} +c

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{x}{4} - \frac{sin(4x)}{16} +c

The solution can be further simplified as:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{4x-sin(4x)}{16} +c

You might be interested in
Please help I'll give brainliest!
aleksley [76]

the answer is b shift 2 cause the mean of shift to equals 40.4

8 0
3 years ago
How would you find "b" in the y=mx+b equation? I have the "m" but I cannot find the "b" ​
ira [324]
B is just simply the y intercept
3 0
2 years ago
Marvin sells prawns at $12 per kg. How much money will Marvin receive from selling 30 kg of prawns?
igomit [66]

Answer: Start off and multiply 12x30=360

Step-by-step explanation: He will recieve 360$

3 0
2 years ago
A table of values of a linear function is shown below. Find the output when the input is . Type your answer in the space provide
Tcecarenko [31]

Answer:

y=4n+2

really sorry if this aint right

Step-by-step explanation:

6 0
3 years ago
What property is shown by the equation?
galben [10]

wait what is it i needddd helllpppp


6 0
3 years ago
Other questions:
  • Please help. 100 points to best answer!!!
    15·1 answer
  • Find the number of zeroes at the end of 26!-25!
    10·1 answer
  • Arlene is showing her work in simplifying −7.9 + 8.2 − 3.4 + 2.1. Identify any errors in her work or in her reasoning. Write fee
    11·2 answers
  • WHOEVER EXPLAINS ALL THEIR WORK AND GOES THROW EAXH STEP WILL GET BRAINLEST THAT IS COMPLETELY FINISEHD. write the equation of t
    10·1 answer
  • The sum of two consecutive numbers is n+1. What are the numbers?
    7·1 answer
  • True or false: Every sequence is either arithmetic or geometric. If this is true, explain. If false, give a counterexample to il
    13·1 answer
  • Means and SDs. For each part, compare distributions (1) and (2) based on their means and standard deviations. You do not need to
    13·1 answer
  • PLEASE HELP FAST please
    12·1 answer
  • Kayla has 1,000 Apples in 5 bags, Mack has 999 apples in 5 bags as well, how many apples does Kayla have THAN Mack? Mack said th
    5·1 answer
  • PLEASE HELP 100 POINTS AND BRAINLIEST
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!