1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga2289 [7]
3 years ago
10

Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.) cos(x) sin(2x

) sin(x) dx
Mathematics
1 answer:
Tasya [4]3 years ago
6 0

Answer:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{4x-sin(4x)}{16} +c

Step-by-step explanation:

Given

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx

Required

Evaluate

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx

Rewrite as:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {cos(x)\ sin(x)\ sin(2x)} \, dx

In trigonometry:

sin(2x) = 2\ sin(x)\ cos(x)

Divide both sides by 2

\frac{1}{2}sin(2x) = \frac{2\ sin(x)\ cos(x) }{2}

\frac{1}{2}sin(2x) = sin(x)\ cos(x)

\frac{1}{2}sin(2x) = cos(x)\ sin(x)

Substitute \frac{1}{2}sin(2x) for cos(x)\ sin(x)

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {\frac{1}{2}sin(2x)\ sin(2x)} \, dx

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {\frac{1}{2}sin^2(2x)} \, dx

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(2x)} \, dx

Let u = 2x

Differentiate:

du = 2 \ dx

Make dx the subject

dx = \frac{1}{2}du

Substitute \frac{1}{2}du for dx

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(2x)} \, \frac{1}{2}du

Substitute 2x for u

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(u)} \, \frac{1}{2}du

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}*\frac{1}{2}\int\limits {sin^2(u)} \, du

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}\int\limits {sin^2(u)} \, du

At this point, we apply the reduction formula:

Which is:

\int\limits {sin^n(u)} \, du = \frac{n-1}{2}\int\limits sin^{n-2}(u)\ du\ - \frac{cos(u)sin^{n-1}(u)}{n}\du

Let n = 2; So, we have:

\int\limits {sin^2(u)} \, du = \frac{2-1}{2}\int\limits sin^{2-2}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du

\int\limits {sin^2(u)} \, du = \frac{2-1}{2}\int\limits sin^{0}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du

\int\limits {sin^2(u)} \, du = \frac{1}{2}\int\limits sin^{0}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du

sin^0(u) = 1

So, we have:

\int\limits {sin^2(u)} \, du = \frac{1}{2}\int\limits 1\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du

Integrate 1 with respect to u

\int\limits {sin^2(u)} \, du = \frac{1}{2}u - \frac{cos(u)sin^{2-1}(u)}{2}\du

\int\limits {sin^2(u)} \, du = \frac{1}{2}u - \frac{cos(u)sin(u)}{2}\du

Recall that:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}\int\limits {sin^2(u)} \, du

So, we have:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}[ \frac{1}{2}u - \frac{cos(u)sin(u)}{2}\du]

Open bracket

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{8}u - \frac{cos(u)sin(u)}{8}

Recall that:  u = 2x and  du = 2 \ dx      dx = \frac{1}{2}du

So, the expression becomes:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{8}2x - \frac{cos(2x)sin(2x)}{8}

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8}

Add constant c

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8} +c

----------------------------------------------------------------------------------------

In trigonometry:

sin(2\theta) = 2sin(\theta)cos(\theta)

Divide both sides by 2

\frac{1}{2}sin(2\theta) = \frac{2sin(\theta)cos(\theta)}{2}

\frac{1}{2}sin(2\theta) = sin(\theta)cos(\theta)

Replace 2x with \theta

\frac{1}{2}sin(2*2x) = sin(2x)cos(2x)

\frac{1}{2}sin(4x) = sin(2x)cos(2x)

----------------------------------------------------------------------------------------

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8} +c becomes

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{sin(4x)}{2*8} +c

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{sin(4x)}{16} +c

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{x}{4} - \frac{sin(4x)}{16} +c

The solution can be further simplified as:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{4x-sin(4x)}{16} +c

You might be interested in
If all of the diagonals are drawn from a vertex of a quadrilateral, how many triangles are formed? 1 2 3 4
Archy [21]
2 because if you have a square and draw a diagonal you get two triangles
5 0
4 years ago
Read 2 more answers
Jessica has 48 coins, some of them are nickels and some are dimes. How many of each does she have if she has $3.25 total?
Olin [163]
Jessica has 30 dimes and 5 Nickels
7 0
3 years ago
Read 2 more answers
A rectangle has perimeter 110 cm and its length is 1 cm more than twice its width.
posledela

Answer:

37cm

Step-by-step explanation:

width = w

length = 2w+1

 

perimeter = 2(length +width)

 

110 =2(2w+1+w)

110 = 2(3w+1)

110 = 6w+2

108 =6w

18 = w

 

width = w = 18cm

length = 2w+1 =2(18)+1 =36+1 =37cm

5 0
3 years ago
Triangle ABC is transformed to form triangle A'B'C' .
Natalka [10]

Answer: the answer is rotated counterclockwise and 180 degrees about the origin! Trust me I did the test

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Find GHD on the diagram below
mina [271]
63 degrees. because the angles are congruent and alternate interior angles
5 0
3 years ago
Other questions:
  • What is the inverse of the function f(x)=19/x^3
    13·1 answer
  • Stephan drives at a speed of 50 miles per hour how long will it take to drive at 175
    11·2 answers
  • Answer choices:<br> A.) 441<br> B.) 64<br> C.) 22.5<br> D.) 19.4
    9·2 answers
  • Your dog eats 7/8lb of food in 4 meals. How much food does your dog eat per meal?
    7·1 answer
  • Name 12 different rays
    7·2 answers
  • What Percentage did you tip if your lunch was $10 and you left $2
    14·2 answers
  • In right triangle ABC, where C is the right angle : b = 12 and B = 33°. Find A, a, and c to the nearest tenth.
    6·1 answer
  • The bike rental shop charges $12.00 plus $8.00 per hour for renting a bike. Jason
    5·2 answers
  • Please tell me what i should select ​
    6·2 answers
  • 4) Write the equation of the line graphed<br> below.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!