1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga2289 [7]
2 years ago
10

Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.) cos(x) sin(2x

) sin(x) dx
Mathematics
1 answer:
Tasya [4]2 years ago
6 0

Answer:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{4x-sin(4x)}{16} +c

Step-by-step explanation:

Given

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx

Required

Evaluate

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx

Rewrite as:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {cos(x)\ sin(x)\ sin(2x)} \, dx

In trigonometry:

sin(2x) = 2\ sin(x)\ cos(x)

Divide both sides by 2

\frac{1}{2}sin(2x) = \frac{2\ sin(x)\ cos(x) }{2}

\frac{1}{2}sin(2x) = sin(x)\ cos(x)

\frac{1}{2}sin(2x) = cos(x)\ sin(x)

Substitute \frac{1}{2}sin(2x) for cos(x)\ sin(x)

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {\frac{1}{2}sin(2x)\ sin(2x)} \, dx

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {\frac{1}{2}sin^2(2x)} \, dx

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(2x)} \, dx

Let u = 2x

Differentiate:

du = 2 \ dx

Make dx the subject

dx = \frac{1}{2}du

Substitute \frac{1}{2}du for dx

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(2x)} \, \frac{1}{2}du

Substitute 2x for u

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(u)} \, \frac{1}{2}du

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}*\frac{1}{2}\int\limits {sin^2(u)} \, du

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}\int\limits {sin^2(u)} \, du

At this point, we apply the reduction formula:

Which is:

\int\limits {sin^n(u)} \, du = \frac{n-1}{2}\int\limits sin^{n-2}(u)\ du\ - \frac{cos(u)sin^{n-1}(u)}{n}\du

Let n = 2; So, we have:

\int\limits {sin^2(u)} \, du = \frac{2-1}{2}\int\limits sin^{2-2}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du

\int\limits {sin^2(u)} \, du = \frac{2-1}{2}\int\limits sin^{0}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du

\int\limits {sin^2(u)} \, du = \frac{1}{2}\int\limits sin^{0}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du

sin^0(u) = 1

So, we have:

\int\limits {sin^2(u)} \, du = \frac{1}{2}\int\limits 1\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du

Integrate 1 with respect to u

\int\limits {sin^2(u)} \, du = \frac{1}{2}u - \frac{cos(u)sin^{2-1}(u)}{2}\du

\int\limits {sin^2(u)} \, du = \frac{1}{2}u - \frac{cos(u)sin(u)}{2}\du

Recall that:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}\int\limits {sin^2(u)} \, du

So, we have:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}[ \frac{1}{2}u - \frac{cos(u)sin(u)}{2}\du]

Open bracket

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{8}u - \frac{cos(u)sin(u)}{8}

Recall that:  u = 2x and  du = 2 \ dx      dx = \frac{1}{2}du

So, the expression becomes:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{8}2x - \frac{cos(2x)sin(2x)}{8}

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8}

Add constant c

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8} +c

----------------------------------------------------------------------------------------

In trigonometry:

sin(2\theta) = 2sin(\theta)cos(\theta)

Divide both sides by 2

\frac{1}{2}sin(2\theta) = \frac{2sin(\theta)cos(\theta)}{2}

\frac{1}{2}sin(2\theta) = sin(\theta)cos(\theta)

Replace 2x with \theta

\frac{1}{2}sin(2*2x) = sin(2x)cos(2x)

\frac{1}{2}sin(4x) = sin(2x)cos(2x)

----------------------------------------------------------------------------------------

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8} +c becomes

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{sin(4x)}{2*8} +c

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{sin(4x)}{16} +c

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{x}{4} - \frac{sin(4x)}{16} +c

The solution can be further simplified as:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{4x-sin(4x)}{16} +c

You might be interested in
Help me out here plz
slamgirl [31]

Answer:

I think that it would be 28^{2} cm

Step-by-step explanation:

8 x 7 = 56

56/2 = 28

6 0
3 years ago
The value of the digit 3 in 730,500 is the value of the digit 3 in 73,050
11Alexandr11 [23.1K]

Answer:

3 in 730500

tens of thousands

3 in 73050

thousands

7 0
1 year ago
i When 20 is added to a certain number and the sun is divided by 3, the result is 3 times the number, find the number.​
Bingel [31]

Answer:

let \: the \: number \: be \: x \\  \frac{20 + x}{3}  = 3x \\  \frac{3(20 + x)}{3}  = (3x)3 \\ 20 + x = 9x \\ 20 = 9x - x \\ 20 = 8x \\  \frac{20}{8}  =  \frac{8x}{8}   \\ x = 2.5

Step-by-step explanation:

Hope that this is helpful .

Have a great day.

3 0
2 years ago
Avery planned a circular garden and path as shown below. The radius of the garden is 4 feet and the path around the garden is 2
Digiron [165]

Answer:

Option C) 113.0 feet squared

Step-by-step explanation:

We are given the following in the question:

Radius of circular garden = 4 feet

Length of path around garden =  2 feet

We have to find the total area of garden and path.

The garden and path together makes a bigger circle with radius

R = 4 + 2 = 6\text{ Feet}

Area of garden and path =

A = \pi R^2

Putting values, we get,

A  = 3.14\times (6)^2 = 113.04\\A \approx = 113.0\text{ square feet}

Thus, the correct answer is

Option C) 113.0 feet squared

8 0
2 years ago
Read 2 more answers
Is x/10=y a direct variation. If so, what is the constant of proportionality?
stiv31 [10]

Answer:

Yes,

y

=

−

x

10

is a direct variation

6 0
3 years ago
Other questions:
  • Julie is selling candy bars to raise money for new band uniforms. Candy bar X sells for $2 and candy bar Y sells for $3. Julie n
    13·2 answers
  • The height of the tunnel at the center is 54 ft, and the vertical clearance must be 18 ft at a point 8 ft from the center. Find
    10·1 answer
  • Write or type 3 linear equations in slope-intercept form whose graphs all pass through the point (-2. 5).
    10·1 answer
  • Find the quotient please
    12·1 answer
  • Can u tell me the answer plz
    12·2 answers
  • Please help ? Question 27 and question 28
    12·1 answer
  • Write the equation of a line that is perpendicular to y=7/5 x+6, that passes through the point (2,-6).
    14·1 answer
  • Multiplying polynomials: simplify <br> (4a+2)(6a^2-a+2)
    11·1 answer
  • What is the value of <br><img src="https://tex.z-dn.net/?f=%20%5Cfrac%7B%20%7B3%3F%7D%5E%7B2%3F%7D%20%7D%7B3%20%7B%7D%5E%7B4%3F%
    6·1 answer
  • Help math 20 points plz help help ​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!