1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga2289 [7]
2 years ago
10

Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.) cos(x) sin(2x

) sin(x) dx
Mathematics
1 answer:
Tasya [4]2 years ago
6 0

Answer:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{4x-sin(4x)}{16} +c

Step-by-step explanation:

Given

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx

Required

Evaluate

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx

Rewrite as:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {cos(x)\ sin(x)\ sin(2x)} \, dx

In trigonometry:

sin(2x) = 2\ sin(x)\ cos(x)

Divide both sides by 2

\frac{1}{2}sin(2x) = \frac{2\ sin(x)\ cos(x) }{2}

\frac{1}{2}sin(2x) = sin(x)\ cos(x)

\frac{1}{2}sin(2x) = cos(x)\ sin(x)

Substitute \frac{1}{2}sin(2x) for cos(x)\ sin(x)

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {\frac{1}{2}sin(2x)\ sin(2x)} \, dx

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {\frac{1}{2}sin^2(2x)} \, dx

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(2x)} \, dx

Let u = 2x

Differentiate:

du = 2 \ dx

Make dx the subject

dx = \frac{1}{2}du

Substitute \frac{1}{2}du for dx

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(2x)} \, \frac{1}{2}du

Substitute 2x for u

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(u)} \, \frac{1}{2}du

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}*\frac{1}{2}\int\limits {sin^2(u)} \, du

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}\int\limits {sin^2(u)} \, du

At this point, we apply the reduction formula:

Which is:

\int\limits {sin^n(u)} \, du = \frac{n-1}{2}\int\limits sin^{n-2}(u)\ du\ - \frac{cos(u)sin^{n-1}(u)}{n}\du

Let n = 2; So, we have:

\int\limits {sin^2(u)} \, du = \frac{2-1}{2}\int\limits sin^{2-2}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du

\int\limits {sin^2(u)} \, du = \frac{2-1}{2}\int\limits sin^{0}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du

\int\limits {sin^2(u)} \, du = \frac{1}{2}\int\limits sin^{0}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du

sin^0(u) = 1

So, we have:

\int\limits {sin^2(u)} \, du = \frac{1}{2}\int\limits 1\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du

Integrate 1 with respect to u

\int\limits {sin^2(u)} \, du = \frac{1}{2}u - \frac{cos(u)sin^{2-1}(u)}{2}\du

\int\limits {sin^2(u)} \, du = \frac{1}{2}u - \frac{cos(u)sin(u)}{2}\du

Recall that:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}\int\limits {sin^2(u)} \, du

So, we have:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}[ \frac{1}{2}u - \frac{cos(u)sin(u)}{2}\du]

Open bracket

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{8}u - \frac{cos(u)sin(u)}{8}

Recall that:  u = 2x and  du = 2 \ dx      dx = \frac{1}{2}du

So, the expression becomes:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{8}2x - \frac{cos(2x)sin(2x)}{8}

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8}

Add constant c

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8} +c

----------------------------------------------------------------------------------------

In trigonometry:

sin(2\theta) = 2sin(\theta)cos(\theta)

Divide both sides by 2

\frac{1}{2}sin(2\theta) = \frac{2sin(\theta)cos(\theta)}{2}

\frac{1}{2}sin(2\theta) = sin(\theta)cos(\theta)

Replace 2x with \theta

\frac{1}{2}sin(2*2x) = sin(2x)cos(2x)

\frac{1}{2}sin(4x) = sin(2x)cos(2x)

----------------------------------------------------------------------------------------

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8} +c becomes

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{sin(4x)}{2*8} +c

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{sin(4x)}{16} +c

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{x}{4} - \frac{sin(4x)}{16} +c

The solution can be further simplified as:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{4x-sin(4x)}{16} +c

You might be interested in
The graph below shows a transformation, g(x), of the parent function, f(x) = 2^x. Which TWO statements describe the relationship
lianna [129]
This is my answer - a beautiful image. You haven’t attached the image to determine the answer, please do!

8 0
2 years ago
Factor the expression using the GCF.<br><br> 18h+30k<br><br> The factored form is <br> .
Murljashka [212]

Answer:

6(3h+5k)

Step-by-step explanation:

18h+30k

Factors of 18:

1, 2, 3, 6, 9, 18

Factors of 30:

1, 2, 3, 5, 6, 10, 15, 30

GCF of 18 and 30: 6

18h+30k = 6(3h+5k)

Check your answer:

6(3h+5k)

6(3h) + 6(5k)

18h + 30k

Hope this helps!

7 0
2 years ago
Graph this equation y=7/2x-2
MariettaO [177]
To find the slope<span> and y </span>intercept<span>, use the </span><span>y=mx+b</span> formula<span> where </span>m<span> is the </span>slope<span> and </span>b<span> is the y </span>intercept<span>.
</span><span>y=mx+b

</span>Pull the values of m<span> and </span>b<span> using the </span><span>y=mx+b</span> formula<span>.
</span><span>m=<span>7/2</span>,</span><span>b=−2</span><span> where m is the </span>slope<span> and b is the </span>y-intercept 

7 0
3 years ago
What is the solution to the system of equations?<br> O (-4,1)<br> O (-2, 1)<br> O (1.4)<br> O (1,-2)
Tcecarenko [31]

Answer:

<em></em>(1,-2)<em></em>

<em></em>

Step-by-step explanation:

Given

The attached graph

Required

Determine the solution

The solution here is the intersection points of the two lines. From the attachment, both lines meet

x = 1

y = -2

<em>Hence, the solution is: </em>(1,-2)<em></em>

3 0
3 years ago
What is the value of Y
Keith_Richards [23]
76 degrees. Angle y is supplementary to angle “2x+20”.
4 0
2 years ago
Other questions:
  • six packs of 90 piece of candy all bags have exactly the same number of pieces of candy how many bags hold 195 piece of candy
    8·1 answer
  • Mixed number as a decimal. 8 1/10
    14·1 answer
  • you spend at most $10 at the mall you want to buy a book that costs $6.75 and a cold drink how much can you spend on the drink?
    12·1 answer
  • Help with geometry homework
    5·1 answer
  • The volume (V) of a cylinder can be found using the formula V = (pi)r^2h, where r is the radius and h is the height. A cylinder
    11·1 answer
  • If 2x/2y=16,what is the value of x-y?
    14·1 answer
  • Suppose a team is to be formed consisting of a head chef, sous chef, and dishwasher, in that order. What is the probability of f
    15·1 answer
  • –5x + 10 &gt; –15?<br> solve
    15·2 answers
  • Which triangle is similar to JKL?
    8·1 answer
  • You multiply a number by 3 subtract 6 then add 2 the results is 20 what's the number
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!