1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga2289 [7]
2 years ago
10

Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.) cos(x) sin(2x

) sin(x) dx
Mathematics
1 answer:
Tasya [4]2 years ago
6 0

Answer:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{4x-sin(4x)}{16} +c

Step-by-step explanation:

Given

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx

Required

Evaluate

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx

Rewrite as:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {cos(x)\ sin(x)\ sin(2x)} \, dx

In trigonometry:

sin(2x) = 2\ sin(x)\ cos(x)

Divide both sides by 2

\frac{1}{2}sin(2x) = \frac{2\ sin(x)\ cos(x) }{2}

\frac{1}{2}sin(2x) = sin(x)\ cos(x)

\frac{1}{2}sin(2x) = cos(x)\ sin(x)

Substitute \frac{1}{2}sin(2x) for cos(x)\ sin(x)

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {\frac{1}{2}sin(2x)\ sin(2x)} \, dx

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \int\limits {\frac{1}{2}sin^2(2x)} \, dx

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(2x)} \, dx

Let u = 2x

Differentiate:

du = 2 \ dx

Make dx the subject

dx = \frac{1}{2}du

Substitute \frac{1}{2}du for dx

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(2x)} \, \frac{1}{2}du

Substitute 2x for u

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}\int\limits {sin^2(u)} \, \frac{1}{2}du

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{2}*\frac{1}{2}\int\limits {sin^2(u)} \, du

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}\int\limits {sin^2(u)} \, du

At this point, we apply the reduction formula:

Which is:

\int\limits {sin^n(u)} \, du = \frac{n-1}{2}\int\limits sin^{n-2}(u)\ du\ - \frac{cos(u)sin^{n-1}(u)}{n}\du

Let n = 2; So, we have:

\int\limits {sin^2(u)} \, du = \frac{2-1}{2}\int\limits sin^{2-2}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du

\int\limits {sin^2(u)} \, du = \frac{2-1}{2}\int\limits sin^{0}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du

\int\limits {sin^2(u)} \, du = \frac{1}{2}\int\limits sin^{0}(u)\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du

sin^0(u) = 1

So, we have:

\int\limits {sin^2(u)} \, du = \frac{1}{2}\int\limits 1\ du\ - \frac{cos(u)sin^{2-1}(u)}{2}\du

Integrate 1 with respect to u

\int\limits {sin^2(u)} \, du = \frac{1}{2}u - \frac{cos(u)sin^{2-1}(u)}{2}\du

\int\limits {sin^2(u)} \, du = \frac{1}{2}u - \frac{cos(u)sin(u)}{2}\du

Recall that:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}\int\limits {sin^2(u)} \, du

So, we have:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}[ \frac{1}{2}u - \frac{cos(u)sin(u)}{2}\du]

Open bracket

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{8}u - \frac{cos(u)sin(u)}{8}

Recall that:  u = 2x and  du = 2 \ dx      dx = \frac{1}{2}du

So, the expression becomes:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{8}2x - \frac{cos(2x)sin(2x)}{8}

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8}

Add constant c

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8} +c

----------------------------------------------------------------------------------------

In trigonometry:

sin(2\theta) = 2sin(\theta)cos(\theta)

Divide both sides by 2

\frac{1}{2}sin(2\theta) = \frac{2sin(\theta)cos(\theta)}{2}

\frac{1}{2}sin(2\theta) = sin(\theta)cos(\theta)

Replace 2x with \theta

\frac{1}{2}sin(2*2x) = sin(2x)cos(2x)

\frac{1}{2}sin(4x) = sin(2x)cos(2x)

----------------------------------------------------------------------------------------

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{cos(2x)sin(2x)}{8} +c becomes

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{sin(4x)}{2*8} +c

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{1}{4}x - \frac{sin(4x)}{16} +c

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{x}{4} - \frac{sin(4x)}{16} +c

The solution can be further simplified as:

\int\limits {cos(x)\ sin(2x)\ sin(x)} \, dx = \frac{4x-sin(4x)}{16} +c

You might be interested in
Explain why f(x) is continuous at x=3
Elina [12.6K]

Answer:

f is not  defined at x = 3 ⇒ answer (b)

Step-by-step explanation:

∵ f(x) = x² - x - 6/x² - 9 is a rational function

∴ It will be undefined at the values of x of the denominator

∵ The denominator is x² - 9

∵ x² - 9 = 0 ⇒ x² = 9 ⇒ x = ±√9

∴ x = ± 3

∴ f(x) can not be defined at x = 3

∴ The f(x) can not be continuous at x = 3

∴ The answer is (b)

6 0
3 years ago
Read 2 more answers
Pls help me thanks!!
Leni [432]

Answer:

Its A <3

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Tickets for Adults were $14.50 and tickets for Children were $9.00. We purchased 12 tickets and spent a total of $135.50 to get
mihalych1998 [28]

Answer:

(5 , 7)

Step-by-step explanation:

let a = the number of adult tickets

let c = the number of children tickets

then we have to solve the following system

a + c = 12

14.5a + 9c = 135.5

we proceed by Substitution:

              c = 12 - a

14.5a + 9c = 135.5

After some calculations we find

a=5 and c=7

6 0
3 years ago
Read 2 more answers
The box-and-whisker plot below shows the age distribution of people at a family reunion.
Wewaii [24]

Answer: answer is c

Step-by-step explanation: quizlet

4 0
3 years ago
Integrate sin²2x cos²2x dx
DochEvi [55]
\sin^2x=\dfrac{1-\cos2x}2
\cos^2x=\dfrac{1+\cos2x}2

From the identities above, you have

\sin^22x\cos^22x=\dfrac{(1-\cos4x)(1+\cos4x)}4=\dfrac{1-\cos^24x}4

Applying once more, you have

\dfrac{1-\cos^24x}4=\dfrac{1-\dfrac{1+\cos8x}2}4=\dfrac{1-\cos8x}8

So,

\displaystyle\int\sin^22x\cos^22x\,\mathrm dx=\frac18\int(1-\cos8x)\,\mathrm dx=\frac x8-\frac1{64}\sin8x+C
7 0
2 years ago
Other questions:
  • What is the unit rate of 100mile/4gallons
    9·1 answer
  • Solve by factorising x^2 + 8x + 15 = 0
    14·1 answer
  • Mo,Ro,and Bo have less than 20 tokens. Ro has more than Mo and Mo has more than Bo. Ro gives Bo three tokens and Mo gives Bo two
    14·1 answer
  • Write an equation for the following situation: 15 less than a number is equal to 12
    6·1 answer
  • 98 POINTS PLEASE HELP
    7·1 answer
  • Please help Geometry!!?
    9·2 answers
  • Please help<br><br><br><br> Write an equation and solve for x
    10·2 answers
  • Tony has a 44 inch shelf. The 2 cups shown on the
    13·1 answer
  • 7 pies shared by 9 people how much does each person get
    14·1 answer
  • M&lt;10 = x; m&lt;11 = x + 20; x =
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!