Answer:
Both get the same results that is,
![\left[\begin{array}{ccc}140\\160\\200\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D140%5C%5C160%5C%5C200%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Given :
![\bf M=\left[\begin{array}{ccc}\frac{1}{5}&\frac{1}{5}&\frac{2}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{1}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{2}{5}\end{array}\right]](https://tex.z-dn.net/?f=%5Cbf%20M%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5Cend%7Barray%7D%5Cright%5D)
and initial population,
![\bf P=\left[\begin{array}{ccc}130\\300\\70\end{array}\right]](https://tex.z-dn.net/?f=%5Cbf%20P%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D130%5C%5C300%5C%5C70%5Cend%7Barray%7D%5Cright%5D)
a) - After two times, we will find in each position.
![P_2=[P].[M]^2=[P].[M].[M]](https://tex.z-dn.net/?f=P_2%3D%5BP%5D.%5BM%5D%5E2%3D%5BP%5D.%5BM%5D.%5BM%5D)
![M^2=\left[\begin{array}{ccc}\frac{1}{5}&\frac{1}{5}&\frac{2}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{1}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{2}{5}\end{array}\right]\times \left[\begin{array}{ccc}\frac{1}{5}&\frac{1}{5}&\frac{2}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{1}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{2}{5}\end{array}\right]](https://tex.z-dn.net/?f=M%5E2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5Cend%7Barray%7D%5Cright%5D%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5Cend%7Barray%7D%5Cright%5D)
![=\frac{1}{25} \left[\begin{array}{ccc}7&7&7\\8&8&8\\10&10&10\end{array}\right]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B25%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%267%267%5C%5C8%268%268%5C%5C10%2610%2610%5Cend%7Barray%7D%5Cright%5D)
![\therefore\;\;\;\;\;\;\;\;\;\;\;P_2=\left[\begin{array}{ccc}7&7&7\\8&8&8\\10&10&10\end{array}\right] \times\left[\begin{array}{ccc}130\\300\\70\end{array}\right] = \left[\begin{array}{ccc}140\\160\\200\end{array}\right]](https://tex.z-dn.net/?f=%5Ctherefore%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3BP_2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%267%267%5C%5C8%268%268%5C%5C10%2610%2610%5Cend%7Barray%7D%5Cright%5D%20%5Ctimes%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D130%5C%5C300%5C%5C70%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D140%5C%5C160%5C%5C200%5Cend%7Barray%7D%5Cright%5D)
b) - With in migration process, 500 people are numbered. There will be after a long time,
![After\;inifinite\;period=[M]^n.[P]](https://tex.z-dn.net/?f=After%5C%3Binifinite%5C%3Bperiod%3D%5BM%5D%5En.%5BP%5D)
![Then,\;we\;get\;the\;same\;result\;if\;we\;measure [M]^n=\frac{1}{25} \left[\begin{array}{ccc}7&7&7\\8&8&8\\10&10&10\end{array}\right]](https://tex.z-dn.net/?f=Then%2C%5C%3Bwe%5C%3Bget%5C%3Bthe%5C%3Bsame%5C%3Bresult%5C%3Bif%5C%3Bwe%5C%3Bmeasure%20%5BM%5D%5En%3D%5Cfrac%7B1%7D%7B25%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%267%267%5C%5C8%268%268%5C%5C10%2610%2610%5Cend%7Barray%7D%5Cright%5D)
![=\left[\begin{array}{ccc}140\\160\\200\end{array}\right]](https://tex.z-dn.net/?f=%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D140%5C%5C160%5C%5C200%5Cend%7Barray%7D%5Cright%5D)
let x be how much longer she can run the race and still beat her previous time
55(min) + x(min) < 1(hr) + 10(min)
55(min) + x(min) < 60(min) + 10(min)
55 + x < 60 + 10
x < 60 + 10 - 55
x < 15(min)
Tan9−tan27−tan63−tan81
tan9+tan81−tan27−tan63
sin9/cos9+sin81/cos81−sin27/cos27−sin63/cos63
sin90/cos81cos9−sin90/cos63cos27
1/sin9cos9−1/sin27cos27
2/sin18−2/sin54
(2)sin54−sin18/sin18sin54
4cos36sin18/sin18cos36=4
Answer:
y intercept = (0,-2)
x intercept = (-2,0)
Step-by-step explanation:
For y intercept, plug 0 for x
y = (0) - 2
y = -2
y intercept = -2
For x intercept, plug 0 for y
(0) = -x - 2
Move -2 to other side
-x = 2
Since x is negitave, make 2 negitave
x = -2
x intercept = -2
Answer:
6%
Step-by-step explanation:
Let T= truck
C= Car
We are looking for the probability that someone owns a truck given that they own a car
or
P(T|C)
The conditional probability formula is as follows:
P(T|C)=(T∩C)/C
plugging in numbers..
.04/.63=6.3492% which rounds to 6%