I believe it’s a trapezoid but i’m not too sure... sorry :((
√121 < √134 < √144
√121 = 11
√144 = 12
11 < √134 < 12
Answer: √134 is between 11 and 12.
Answer:
Check the explanation
Step-by-step explanation:
1) Algorithm for finding the new optimal flux: 1. Let E' be the edges eh E for which f(e)>O, and let G = (V,E). Find in Gi a path Pi from s to u and a path
, from v to t.
2) [Special case: If
, and
have some edge e in common, then Piu[(u,v)}uPx has a directed cycle containing (u,v). In this instance, the flow along this cycle can be reduced by a single unit without any need to change the size of the overall flow. Return the resulting flow.]
3) Reduce flow by one unit along 
4) Run Ford-Fulkerson with this sterling flow.
Justification and running time: Say the original flow has see F. Lees ignore the special case (4 After step (3) Of the elgorithuk we have a legal flaw that satisfies the new capacity constraint and has see F-1. Step (4). FOrd-Fueerson, then gives us the optimal flow under the new cePacie co mint. However. we know this flow is at most F, end thus Ford-Fulkerson runs for just one iteration. Since each of the steps is linear, the total running time is linear, that is, O(lVl + lEl).
Answer:
Continuous
Step-by-step explanation:
Answer:
(77,24)
Step-by-step explanation:
If you have any questions about the way I solved it, don't hesitate to ask